
CyVerse Documentation
Release 0.1.0

CyVerse

Sep 18, 2020

AstroContainers Workshop

1 Workshop Code of Conduct 3

2 Pre-Workshop Setup 5

3 Agenda 9

4 About CyVerse 11

5 Training session in Docker 13

6 Training session in Singularity 15

7 Introduction to Docker 17

8 Advanced Docker 27

9 Additional Docker Demo’s 51

10 Introduction to Singularity 55

11 Advanced Singularity 71

12 Booting an Atmosphere computer instance for your use! 77

13 Docker related resources 89

14 Singularity related resources 91

15 Other resources 93

16 For instructors! 95

17 Problems? Bugs? Questions? 99

i

ii

CyVerse Documentation, Release 0.1.0

AstroContainers Workshop 1

CyVerse Documentation, Release 0.1.0

2 AstroContainers Workshop

CHAPTER 1

Workshop Code of Conduct

All attendees, speakers, sponsors and volunteers at our workshop are required to follow this code of conduct. Orga-
nizers will enforce this code throughout the event. We expect cooperation from all participants to help ensure a safe
environment for everyone.

This Code of Conduct is taken from http://confcodeofconduct.com/. See http://www.ashedryden.com/blog/
codes-of-conduct-101-faq for more information on codes of conduct.

FAIR principles

AstroContainers supports FAIR data principles by providing services that help make data Findable, Accessible, In-
teroperable, and Reusable. Participants will get an introduction to containers and learn how to create and manage
containers.

Learning objectives

Participants will learn key containerization concepts for developing reproducible analysis pipelines, with emphasis on
container lifecycle management from design to execution and scaling.

The workshop will cover key concepts about containers such as defining the architecture of containers, building images
and pushing them to public and private repositories as well as how to scale your analysis from laptop to cloud and to
HPC systems using containers.

Who should attend?

Faculty, researchers, postdocs, and graduate students who use and analyze data of all types (genomics, image data,
from animals, plants, etc.).

Workshop level

This workshop is focused on beginner-level users with little to no previous container experience.

Intermediate and advanced users who attend will gain a better understanding of and ability with container capabilities
and resources, including deploying their own tools and extending these analyses into Cloud and HPC.

Need help?

Couldn’t find what you were looking for?

• You can reach the lead instructor, Chan, chikwan, at chanc at email.arizona dot edu.

3

http://confcodeofconduct.com/
http://www.ashedryden.com/blog/codes-of-conduct-101-faq
http://www.ashedryden.com/blog/codes-of-conduct-101-faq

CyVerse Documentation, Release 0.1.0

• You can also talk to any of the instructors or TAs if you need immediate help.

• Chat with us and our community on Slack.

• Post an issue on the documentation issue tracker on GitHub

4 Chapter 1. Workshop Code of Conduct

https://github.com/CyVerse-learning-materials/astrocontainers_workshop_2018/issues

CHAPTER 2

Pre-Workshop Setup

Please complete the minimum Setup Instructions to prepare for the CyVerse AstroContainers Workshop at the Univer-
sity of Arizona, which will run on May 7th and 8th, 2018.

5

CyVerse Documentation, Release 0.1.0

Prerequisite Notes Links
Wi-Fi-enabled laptop You should be able to use any lap-

top using Windows/MacOS/Linux.
We strongly recommend Fire-
fox or Chrome browser; We do
not recommend Microsoft Edge
Browser. It is recommended that
you have administrative/install per-
missions on your laptop.

• Download FireFox
• Download Chrome

CyVerse Account Please ensure that you have a Cy-
Verse account and have verfied your
account by completing the verifica-
tion steps in the email you got when
you registered.

Register for your cyverse account
at http://user.cyverse.org/. You can
test your account by logging into
http://user.cyverse.org/.

Atmosphere Cloud The Atmosphere Cloud service is
part of CyVerse but it requires ex-
plicit activation. Please ensure that
you have access to CyVerse Atmo-
sphere Cloud.

The Atmosphere Cloud service
should be listed in this webapge
once you log in to CyVerse.

Github Account Please ensure that you have a Github
account

Register for your Github account at
https://github.com/.

Docker Install Docker on your computer
• Docker for mac
• Docker for windows
• Docker for Linux

Dockerhub Account Please ensure that you have a Dock-
erhub account

Register for your Dockerhub ac-
count at https://hub.docker.com/.

UA HPC Account Please ensure that you have a UA
HPC account. Faculty and Prin-
cipal Investigators (PI) can request
and authorize their own HPC ac-
counts. Students and Staff request-
ing HPC Account must be autho-
rized/sponsored by a Faculty mem-
ber or a PI.

Please follow the instruction here.

Text Editor Please ensure that you have a Text
editor of your choice. Any decent
text editor would be sufficient and
recommended ones include Sub-
lime2 and Atom

• Register for Sublime at https:
//www.sublimetext.com/.

• Register for Atom at https://
atom.io/.

Slack for networking We will be using Slack extensively
for communication and networking
purposes

Register for Slack at https://slack.
com/.

Optional Download Extras

Listed below are some extra downloads that aren’t required for the workshop, but which provide some options for
functionalities we will cover.

6 Chapter 2. Pre-Workshop Setup

https://www.mozilla.org/en-US/firefox/new/?scene=2
https://www.google.com/chrome/browser/
http://user.cyverse.org/
http://user.cyverse.org/
https://user.cyverse.org/services/available
https://github.com/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://hub.docker.com/
https://docs.hpc.arizona.edu/display/UAHPC/Account+Creation
https://www.sublimetext.com/
https://www.sublimetext.com/
https://atom.io/
https://atom.io/
https://slack.com/
https://slack.com/

CyVerse Documentation, Release 0.1.0

Tool Notes Link
SSH Clients (Windows) PuTTY allows SSH connection to

a remote machine, and is designed
for Windows users who do not have
a Mac/Linux terminal. MobaXterm
is a single Windows application that
provides a ton of functions for pro-
grammers, webmasters, IT adminis-
trators, and anybody is looking to
manage system remotely

• Download PuTTY
• Download mobaXterm
• Update Windows 10 to use

Linux Bash

Cyberduck Cyberduck is a third-party tool
for uploading/downloading data to
CyVerse Data Store. Currently,
this tool is available for Win-
dows/MacOS only. You will need to
download Cyberduck and the con-
nection profile. We will go through
configuration and installation at the
workshop.

• Download Cyberduck
• Download CyVerse Cyber-

duck connection profile

iCommands iCommands are third-party software
for command-line connection to the
CyVerse Data Store.

Download and installation instruc-
tions available at CyVerse Learning
Center

7

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://mobaxterm.mobatek.net
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://cyberduck.io/
https://wiki.cyverse.org/wiki/download/attachments/18188197/iPlant%20Data%20Store.cyberduckprofile?version=1&modificationDate=1436557522000&api=v2
https://wiki.cyverse.org/wiki/download/attachments/18188197/iPlant%20Data%20Store.cyberduckprofile?version=1&modificationDate=1436557522000&api=v2
https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step2.html
https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step2.html

CyVerse Documentation, Release 0.1.0

8 Chapter 2. Pre-Workshop Setup

CHAPTER 3

Agenda

Below are the schedule and classroom materials for CyVerse AstroContainers Workshop, which will run from May
7th and 8th, 2018.

This workshop runs under a Code of Conduct. Please respect it and be excellent to each other!

9

../getting_started/main.html

CyVerse Documentation, Release 0.1.0

Day Time Topic/Activity Notes/Links
05/07/18 (Monday) 09:00am-09:15am Introduction to CyVerse

and Data7 (Nirav Mer-
chant)

Intro slides

09:15am-10:00am Container landscape and
computation resources
(Nirav Merchant)

Intro slides

10:00am-10:15am Coffee and snack break
with networking

10:15am-11:00am Science code and Science
Platform: Docker at LSST
(Frossie Economou)

11:00am-12:00pm Introductory Docker (CK
Chan) • Docker intro slides

• Docker intro demo

12:00pm-01:00pm Lunch break on your own
01:00pm-2:30pm Advanced Docker (Upen-

dra Devisetty)
Advanced docker

2:30pm-3:00pm Coffee break (15 min) and
afternoon session plan-
ning

3:00pm-5:00pm BYOD/A (Hands-on
project)

05/08/18 (Tuesday) 09:00am-9:15am General overview of Sin-
gularity (Tyson Swetnam)

Singularity Overview
Slides Gitpitch slides

9:15am-10:00am Singularity setup (Tyson
Swetnam)

Singularity Introduction

10:00am-10:15am Coffee and snack break
with networking

10:15am-10:45am EHT, PCA, and Singular-
ity (Lia Medeiros)

10:45am-12:00pm Introductory Singularity
cont.. (Tyson Swetnam) • University of Ari-

zona High Perfor-
mance Computing

• Singularity-Hub

12:00pm-01:00pm Lunch break on your own
01:00pm-2:30pm Advanced Singularity

(Chris Reidy)
Advanced Singularity

2:30pm-3:00pm Coffee break (15 min) and
afternoon session plan-
ning

3:00pm-5:00pm BYOD/A (Hands-on
project)

10 Chapter 3. Agenda

https://goo.gl/BzogBs
https://goo.gl/BzogBs
https://docs.google.com/presentation/d/1VDbIdD0bB68wqrDo593wxnUAf1uHVwJtxFpTuxtFrsk/edit?usp=sharing
../docker/dockerintro.html
../docker/dockeradvanced.html
https://docs.google.com/presentation/d/175QD_mm9aKbV-8WW7hKR04naR08UjTRcGc4CIhMMKKk/edit?usp=sharing
https://docs.google.com/presentation/d/175QD_mm9aKbV-8WW7hKR04naR08UjTRcGc4CIhMMKKk/edit?usp=sharing
https://gitpitch.com/tyson-swetnam/cc-camp#/
../singularity/singularityintro.html
https://docs.hpc.arizona.edu/
https://docs.hpc.arizona.edu/
https://docs.hpc.arizona.edu/
https://singularity-hub.org
../singularity/singularityadvanced.html

CHAPTER 4

About CyVerse

CyVerse Vision: Transforming science through data-driven discovery.

CyVerse Mission: Design, deploy, and expand a national cyberinfrastructure for life sciences research and train
scientists in its use. CyVerse provides life scientists with powerful computational infrastructure to handle huge datasets
and complex analyses, thus enabling data-driven discovery. Our powerful extensible platforms provide data storage,
bioinformatics tools, image analyses, cloud services, APIs, and more.

While originally created with the name iPlant Collaborative to serve U.S. plant science communities, CyVerse cy-
berinfrastructure is germane to all life sciences disciplines and works equally well on data from plants, animals, or
microbes. By democratizing access to supercomputing capabilities, we provide a crucial resource to enable scientists
to find solutions for the future. CyVerse is of, by, and for the community, and community-driven needs shape our
mission. We rely on your feedback to provide the infrastructure you need most to advance your science, development,
and educational agenda.

CyVerse Homepage: http://www.cyverse.org

Funding and Citations

CyVerse is funded entirely by the National Science Foundation under Award Numbers DBI-0735191 and DBI-
1265383.

Please cite CyVerse appropriately when you make use of our resources, CyVerse citation policy

11

http://www.cyverse.org
http://www.cyverse.org/acknowledge-and-cite-cyverse

CyVerse Documentation, Release 0.1.0

12 Chapter 4. About CyVerse

CHAPTER 5

Training session in Docker

Trainers (CK Chan and Upendra Devisetty)

In these two sessions, we will explain the various aspects of Docker. Starting with the basics such as starting containers
and managing data using volumes. We will then gradually move to advanced topics such as creating your own images,
pushing and pulling them from registries.

• Docker basics/Introduction (CK)

This is the introductory session of Docker. The topics include Docker installation, running prebuilt Docker containers,
managing data in Docker, and exposing container ports. This session gets you ready to run most of the existing
containers.

• Advanced Docker (Upendra)

This is the advanced session of Docker. The topics include building your own Docker images, pushing and pulling
Docker them to public and private registries, automated Docker image building from github/bitbucket repositories,
Docker compose for building multiple Docker containers, etc.

• Additional Docker Demo’s

We also provide two additional Docker Demo’s for the participants to try.

13

../docker/dockerintro.html
../docker/dockeradvanced.html
../docker/dockerdemos.html

CyVerse Documentation, Release 0.1.0

14 Chapter 5. Training session in Docker

CHAPTER 6

Training session in Singularity

Trainers (Tyson Swetnam and Chris Reidy)

In this session we will show you how to containerize your software/applications using Singularity, push them to
Singularityhub and deploy them on cloud and HPC.

• Singularity basics/Introduction (Tyson Swetnam)

This would be the introductory session for concept of Singularity. The topics include installation Singularity on various
platforms, running prebuilt singularity containers, building singularity containers locally etc.

• Advanced Singularity (Chris Reidy)

This is the advanced session for the concept of Singularity. The topics include pushing and pulling Singularity images
to and from Singularity hub, converting Docker containers to Singularity containers, mounting data on to Singularity
containers etc.

15

../singularity/singularityintro.html
../singularity/singularityadvanced.html

CyVerse Documentation, Release 0.1.0

16 Chapter 6. Training session in Singularity

CHAPTER 7

Introduction to Docker

7.1 1. Prerequisites

There are no specific skills needed for this tutorial beyond a basic comfort with the command line and using a text
editor. Prior experience in python will be helpful but is not required.

17

CyVerse Documentation, Release 0.1.0

7.2 2. Docker Installation

Getting all the tooling setup on your computer can be a daunting task, but not with Docker. Getting Docker up and
running on your favorite OS (Mac/Windows/Linux) is very easy.

The getting started guide on Docker has detailed instructions for setting up Docker on Mac/Windows/Linux.

Note: If you’re using Docker for Windows make sure you have shared your drive.

If you’re using an older version of Windows or MacOS you may need to use Docker Machine instead.

All commands work in either bash or Powershell on Windows.

Once you are done installing Docker, test your Docker installation by running the following command to make sure
you are using version 1.13 or higher:

$ docker --version
Docker version 17.09.0-ce, build afdb6d4

When run without --version you should see a whole bunch of lines showing the different options available with
docker. Alternatively you can test your installation by running the following:

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
03f4658f8b78: Pull complete
a3ed95caeb02: Pull complete
Digest: sha256:8be990ef2aeb16dbcb9271ddfe2610fa6658d13f6dfb8bc72074cc1ca36966a7
Status: Downloaded newer image for hello-world:latest

Hello from Docker.
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
3. The Docker daemon created a new container from that image which runs the

executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it

to your terminal.
.......

Note: Depending on how you’ve installed Docker on your system, you might see a permission denied error
after running the above command. If you’re on Linux, you may need to prefix your Docker commands with sudo.
Alternatively to run docker command without sudo, you need to add your user (who has root privileges) to docker
group. For this run:

Create the docker group:

$ sudo groupadd docker

Add your user to the docker group:

$ sudo usermod -aG docker $USER

18 Chapter 7. Introduction to Docker

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/machine/overview/

CyVerse Documentation, Release 0.1.0

Log out and log back in so that your group membership is re-evaluated

7.3 3. Running Docker containers

Now that you have everything setup, it’s time to get our hands dirty. In this section, you are going to run a container
from Alpine Linux (a lightweight linux distribution) image on your system and get a taste of the docker run
command.

But wait, what exactly is a container and image?

Containers - Running instances of Docker images - containers run the actual applications. A container includes an
application and all of its dependencies. It shares the kernel with other containers, and runs as an isolated process in
user space on the host OS.

Images - The file system and configuration of our application which are used to create containers. To find out more
about a Docker image, run docker inspect hello-world and docker history hello-world. In the
demo above, you could have used the docker pull command to download the hello-world image. However
when you executed the command docker run hello-world, it also did a docker pull behind the scenes to
download the hello-world image with latest tag (we will learn more about tags little later).

Now that we know what a container and image is, let’s run the following command in our terminal:

$ docker run alpine ls -l
total 52
drwxr-xr-x 2 root root 4096 Dec 26 2016 bin
drwxr-xr-x 5 root root 340 Jan 28 09:52 dev
drwxr-xr-x 14 root root 4096 Jan 28 09:52 etc
drwxr-xr-x 2 root root 4096 Dec 26 2016 home
drwxr-xr-x 5 root root 4096 Dec 26 2016 lib
drwxr-xr-x 5 root root 4096 Dec 26 2016 media
........

Similar to docker run hello-world command in the demo above, docker run alpine ls -l com-
mand fetches the alpine:latest image from the Docker registry first, saves it in our system and then runs a
container from that saved image.

When you run docker run alpine, you provided a command ls -l, so Docker started the command specified
and you saw the listing

You can use the docker images command to see a list of all images on your system

$ docker images
REPOSITORY TAG IMAGE ID CREATED
→˓VIRTUAL SIZE
alpine latest c51f86c28340 4 weeks ago 1.
→˓109 MB
hello-world latest 690ed74de00f 5 months ago
→˓960 B

Let’s try something more exciting.

$ docker run alpine echo "Hello world"
Hello world

OK, that’s some actual output. In this case, the Docker client dutifully ran the echo command in our alpine
container and then exited it. If you’ve noticed, all of that happened pretty quickly. Imagine booting up a virtual
machine, running a command and then killing it. Now you know why they say containers are fast!

7.3. 3. Running Docker containers 19

http://www.alpinelinux.org/

CyVerse Documentation, Release 0.1.0

Try another command.

$ docker run alpine sh

Wait, nothing happened! Is that a bug? Well, no. These interactive shells will exit after running any scripted commands
such as sh, unless they are run in an interactive terminal - so for this example to not exit, you need to docker run
-it alpine sh. You are now inside the container shell and you can try out a few commands like ls -l, uname
-a and others.

Before doing that, now it’s time to see the docker ps command which shows you all containers that are currently
running.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
→˓STATUS PORTS NAMES

Since no containers are running, you see a blank line. Let’s try a more useful variant: docker ps -a

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED
→˓STATUS PORTS NAMES
36171a5da744 alpine "/bin/sh" 5 minutes ago
→˓Exited (0) 2 minutes ago fervent_newton
a6a9d46d0b2f alpine "echo 'hello from alp" 6 minutes ago
→˓Exited (0) 6 minutes ago lonely_kilby
ff0a5c3750b9 alpine "ls -l" 8 minutes ago
→˓Exited (0) 8 minutes ago elated_ramanujan
c317d0a9e3d2 hello-world "/hello" 34 seconds ago
→˓Exited (0) 12 minutes ago stupefied_mcclintock

What you see above is a list of all containers that you ran. Notice that the STATUS column shows that these containers
exited a few minutes ago.

If you want to run scripted commands such as sh, they should be run in an interactive terminal. In addition, interactive
terminal allows you to run more than one command in a container. Let’s try that now:

$ docker run -it alpine sh
/ # ls
bin dev etc home lib media mnt proc root run sbin srv
→˓sys tmp usr var
/ # uname -a
Linux de4bbc3eeaec 4.9.49-moby #1 SMP Wed Sep 27 23:17:17 UTC 2017 x86_64 Linux

Running the run command with the -it flags attaches us to an interactive tty in the container. Now you can run as
many commands in the container as you want. Take some time to run your favorite commands.

Exit out of the container by giving the exit command.

/ # exit

Note: If you type exit your container will exit and is no longer active. To check that, try the following:

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED
→˓ STATUS PORTS NAMES
de4bbc3eeaec alpine "/bin/sh" 3 minutes ago
→˓ Exited (0) About a minute ago pensive_leavitt

20 Chapter 7. Introduction to Docker

CyVerse Documentation, Release 0.1.0

If you want to keep the container active, then you can use keys Ctrl-p, Ctrl-q. To make sure that it is not exited
run the same docker ps -a command again:

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED
→˓ STATUS PORTS NAMES
0db38ea51a48 alpine "sh" 3 minutes ago
→˓ Up 3 minutes elastic_lewin

Now if you want to get back into that container, then you can type docker attach <container id>. This
way you can save your container:

$ docker attach 0db38ea51a48

7.4 4. Managing data in Docker

From the above examples, we learned that a running Docker container is an isolated environment created from an
Docker image. This means, although it is possible to store data within the “writable layer” of a container, there are
some limitations:

• The data doesn’t persist when that container is no longer running, and it can be difficult to get the data out of
the container if another process needs it.

• A container’s writable layer is tightly coupled to the host machine where the container is running. You can’t
easily move the data somewhere else.

Docker offers three different ways to mount data into a container from the Docker host: volumes, bind mounts, or
tmpfs volumes. For simplicity, we will only discuss bind mounts here, even though volumes is the more powerful and
usable option for most use cases.

7.4.1 4.1 Bind mounts

Bind mounts: When you use a bind mount, a file or directory on the host machine is mounted into a container.

7.4. 4. Managing data in Docker 21

CyVerse Documentation, Release 0.1.0

Warning: One side effect of using bind mounts, for better or for worse, is that you can change the host filesystem
via processes running in a container, including creating, modifying, or deleting important system files or directo-
ries. This is a powerful ability which can have security implications, including impacting non-Docker processes
on the host system.

If you use --mount to bind-mount a file or directory that does not yet exist on the Docker host, Docker does not
automatically create it for you, but generates an error.

4.1.1 Start a container with a bind mount

Let’s clone a git repository to obtain our data sets:

$ git clone git@github.com:AstroContainers/2018-05-examples.git

We can then cd into the HOPS work directory, and mount it to /root as we launch the
eventhorizontelescope/hops container:

$ cd 2018-05-examples/hops
$ ls
1234
$ docker run -it --rm --name hops -v $PWD:/root eventhorizontelescope/hops
Setup HOPS v3.19 with HOPS_ROOT=/root for x86_64-3.19

You will start at the /root work directory and the host data 1234 is available in it:

22 Chapter 7. Introduction to Docker

CyVerse Documentation, Release 0.1.0

$ pwd
/root
$ ls
1234

You can open another terminal and use docker inspect hops | grep -A9 Mounts to verify that the bind
mount was created correctly. Look for the “Mounts” section

$ docker inspect hops | grep -A9 Mounts
"Mounts": [

{
"Type": "bind",
"Source": "/Users/ckchan/2018-05-examples/hops",
"Destination": "/root",
"Mode": "",
"RW": true,
"Propagation": "rprivate"

}
],

This shows that the mount is a bind mount, it shows the correct source and target, it shows that the mount is read-write,
and that the propagation is set to rprivate.

7.4.2 Use case 1: Processing VLBI data with HOPS in Docker

HOPS stands for the Haystack Observatory Postprocessing System. It is a standard tool used in Very-long-baseline
interferometry (VLBI) to perform data analysis. HOPS has a long history and it depends on legacy libraries. This
makes it difficult to compile HOPS on modern Unix/Linux systems. Nevertheless, the Docker, you have already
launched a HOPS envirnment that you can analysis VLBI data!

The most basic step in analysis VLBI is called “fringe fitting”, which we will perform in the running HOPS container
by

$ ls 1234/No0055/
3C279.zxxerd L..zxxerd LL..zxxerd LW..zxxerd W..zxxerd WW..zxxerd
$ fourfit 1234
fourfit: Warning: No valid data for this pass for pol 2
fourfit: Warning: No valid data for this pass for pol 3
$ ls 1234/No0055/
3C279.zxxerd LL..zxxerd LL.B.2.zxxerd LW.B.3.zxxerd W..zxxerd WW.B.5.zxxerd
L..zxxerd LL.B.1.zxxerd LW..zxxerd LW.B.4.zxxerd WW..zxxerd

fourfit reads in the correlated data and create the so called “fringe files”. The warnings are normal because there
are missing polarizations in the data. In order to see the result of the fringe fitting, you can use fplot:

$ fplot -d %04d.ps 1234
$ ls
0000.ps 0001.ps 0002.ps 0003.ps 0004.ps 1234

You just created 4 fringe plots which contain all important information of the VLBI experiment! Now you can exit
your HOPS container and open them on your host machine.

7.4. 4. Managing data in Docker 23

CyVerse Documentation, Release 0.1.0

7.5 5. Exposing container ports

Mounting a host directory is one way to make a container connect with the outside work. Another possible is through
network by exposing a port.

7.5.1 Use case 2: Processing Galaxy Simulation with Jupyter in Docker

In this second use case, we will use Docker to run a “ready to go” Jupyter notebook in a container. We will expose the
port 8888 from the container to the localhost so that you can connect to the notebook.

Inside the 2018-05-examples git repository that you downloaded earlier, there is a sample Galaxy simulation:

$ pwd
/Users/ckchan/2018-05-examples/hops
$ cd ../galaxy/
$ pwd
/Users/ckchan/2018-05-examples/galaxy

Specify the uid of the jovyan user. Useful to mount host volumes with specific
→˓file ownership. For this option to take effect, you must run the container with --
→˓user root

$ docker run -it --rm -v $PWD:/home/jovyan/work -p 8888:8888 -e NB_UID=$(id -u) --
→˓user root astrocontainers/jupyter

Set username to: jovyan
usermod: no changes
Set jovyan UID to: 1329
Executing the command: jupyter notebook
[I 23:36:09.446 NotebookApp] Writing notebook server cookie secret to /home/

→˓jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
[W 23:36:09.686 NotebookApp] WARNING: The notebook server is listening on all IP

→˓addresses and not using encryption. This is not recommended.
[I 23:36:09.722 NotebookApp] JupyterLab beta preview extension loaded from /opt/

→˓conda/lib/python3.6/site-packages/jupyterlab
[I 23:36:09.722 NotebookApp] JupyterLab application directory is /opt/conda/share/

→˓jupyter/lab
[I 23:36:09.730 NotebookApp] Serving notebooks from local directory: /home/jovyan
[I 23:36:09.730 NotebookApp] 0 active kernels
[I 23:36:09.730 NotebookApp] The Jupyter Notebook is running at:
[I 23:36:09.730 NotebookApp] http://[all ip addresses on your system]:8888/?

→˓token=a81dbeec92b286df393bb484fdf53efffab410fd64ec8702
[I 23:36:09.730 NotebookApp] Use Control-C to stop this server and shut down all

→˓kernels (twice to skip confirmation).
[C 23:36:09.731 NotebookApp]
Copy/paste this URL into your browser when you connect for the first time,

to login with a token:
http://localhost:8888/?token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478

The last line is a URL that we need to copy and paste into our browser to access our new Jupyter Notebook:

http://localhost:8888/?token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478

Warning: Do not copy and paste the above URL in your browser as this URL is specific to my environment and
it doesn’t work for you.

24 Chapter 7. Introduction to Docker

CyVerse Documentation, Release 0.1.0

Once you’ve done that you should be greeted by your very own containerised Jupyter service! Now open work/
InClassLab7_Template_wSolutions.ipynb and try analysis a Galaxy simulation!

7.5. 5. Exposing container ports 25

CyVerse Documentation, Release 0.1.0

To shut down the container once you’re done working, simply hit Ctrl-C in the terminal/command prompt. Your
work will all be saved on your actual machine in the path we set in our Docker compose file. And there you have it—a
quick and easy way to start using Jupyter notebooks with the magic of Docker.

26 Chapter 7. Introduction to Docker

CHAPTER 8

Advanced Docker

Now that we are relatively comfortable with Docker basics, lets look at some of the advanced Docker topics such as
building your own Docker image (manul and automatic) using Dockerfile, porting the Docker image to repositories
(public and private), and finally deploy containers into cloud and other infrastructures, etc.

8.1 1. Building Docker images

As our HOPS example showed in the last session, one area where Docker shines is when you need to use a command
line utility that has a large number of dependencies.

In this session, let’s dive deeper into what Docker images are. Later on we will build our own image and use that
image to run an application locally.

8.1.1 1.1 Docker images

Docker images are the basis of containers. In the previous example, you pulled the hello-world image from the
registry and asked the Docker client to run a container based on that image. To see the list of images that are available
locally on your system, run the docker images command.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
astroml latest 8054c898a213 27 seconds ago 934MB
debian stretch 8626492fecd3 7 days ago 101MB
hello-world latest 690ed74de00f 5 months ago 960 B
alpine latest 3fd9065eaf02 3 months ago 4.15MB
.........

Above is a list of images that I’ve pulled from the registry and those I’ve created myself (we’ll shortly see how). You
will have a different list of images on your machine. The TAG refers to a particular snapshot of the image and the ID
is the corresponding unique identifier for that image.

For simplicity, you can think of an image akin to a git repository - images can be committed with changes and have
multiple versions. When you do not provide a specific version number, the client defaults to latest.

27

CyVerse Documentation, Release 0.1.0

For example you could pull a specific version of ubuntu image as follows:

$ docker pull ubuntu:16.04

If you do not specify the version number of the image, as mentioned, the Docker client will default to a version named
latest.

So for example, the docker pull command given below will pull an image named ubuntu:latest

$ docker pull ubuntu

To get a new Docker image you can either get it from a registry (such as the Docker hub) or create your own. There are
hundreds of thousands of images available on Docker hub. You can also search for images directly from the command
line using docker search.

$ docker search ubuntu
NAME DESCRIPTION

→˓ STARS OFFICIAL AUTOMATED
ubuntu Ubuntu is a Debian-based

→˓Linux operating sys... 7310 [OK]
dorowu/ubuntu-desktop-lxde-vnc Ubuntu with openssh-server

→˓and NoVNC 163 [OK]
rastasheep/ubuntu-sshd Dockerized SSH service,

→˓built on top of offi... 131 [OK]
ansible/ubuntu14.04-ansible Ubuntu 14.04 LTS with

→˓ansible 90 [OK]
ubuntu-upstart Upstart is an event-based

→˓replacement for th... 81 [OK]
neurodebian NeuroDebian provides

→˓neuroscience research s... 43 [OK]
ubuntu-debootstrap debootstrap --

→˓variant=minbase --components=m... 35 [OK]
1and1internet/ubuntu-16-nginx-php-phpmyadmin-mysql-5 ubuntu-16-nginx-php-

→˓phpmyadmin-mysql-5 26 [OK]
nuagebec/ubuntu Simple always updated Ubuntu

→˓docker images w... 22 [OK]
tutum/ubuntu Simple Ubuntu docker images

→˓with SSH access 18
ppc64le/ubuntu Ubuntu is a Debian-based

→˓Linux operating sys... 11
i386/ubuntu Ubuntu is a Debian-based

→˓Linux operating sys... 9
1and1internet/ubuntu-16-apache-php-7.0 ubuntu-16-apache-php-7.0

→˓ 7 [OK]
eclipse/ubuntu_jdk8 Ubuntu, JDK8, Maven 3, git,

→˓curl, nmap, mc, ... 5 [OK]
darksheer/ubuntu Base Ubuntu Image -- Updated

→˓hourly 3 [OK]
codenvy/ubuntu_jdk8 Ubuntu, JDK8, Maven 3, git,

→˓curl, nmap, mc, ... 3 [OK]
1and1internet/ubuntu-16-nginx-php-5.6-wordpress-4 ubuntu-16-nginx-php-5.6-

→˓wordpress-4 2 [OK]
1and1internet/ubuntu-16-nginx ubuntu-16-nginx

→˓ 2 [OK]
pivotaldata/ubuntu A quick freshening-up of the

→˓base Ubuntu doc... 1
smartentry/ubuntu ubuntu with smartentry

→˓ 0 [OK]

(continues on next page)

28 Chapter 8. Advanced Docker

CyVerse Documentation, Release 0.1.0

(continued from previous page)

pivotaldata/ubuntu-gpdb-dev Ubuntu images for GPDB
→˓development 0
1and1internet/ubuntu-16-healthcheck ubuntu-16-healthcheck

→˓ 0 [OK]
thatsamguy/ubuntu-build-image Docker webapp build images

→˓based on Ubuntu 0
ossobv/ubuntu Custom ubuntu image from

→˓scratch (based on o... 0
1and1internet/ubuntu-16-sshd ubuntu-16-sshd

→˓ 0 [OK]

An important distinction with regard to images is between base images and child images and official images and user
images (Both of which can be base images or child images.).

Important: Base images are images that have no parent images, usually images with an OS like ubuntu, alpine or
debian.

Child images are images that build on base images and add additional functionality.

Official images are Docker sanctioned images. Docker, Inc. sponsors a dedicated team that is responsible for re-
viewing and publishing all Official Repositories content. This team works in collaboration with upstream software
maintainers, security experts, and the broader Docker community. These are not prefixed by an organization or user
name. In the list of images above, the python, node, alpine and nginx images are official (base) images. To find out
more about them, check out the Official Images Documentation.

User images are images created and shared by users like you. They build on base images and add additional function-
ality. Typically these are formatted as user/image-name. The user value in the image name is your Dockerhub
user or organization name.

8.1.2 1.2 Building custom Docker images

1.2.1 Using docker commit (not recommended)

As we saw in the Docker introduction, the general Docker workflow is:

• start a container based on an image in a known state

• add things to the filesystem, such as packages, codebases, libraries, files, or anything else

• commit the changes as layers to make a new image

Let’s follow this workflow to built a custom image. Instead of alpine this time we will use ubuntu linux image to
install some interesting packages

As before first either pull the ubuntu docker image or you can just docker run -it ubuntu to pull and run the container
interactively

$ docker run -it ubuntu:16.04
Unable to find image 'ubuntu:16.04' locally
16.04: Pulling from library/ubuntu
Digest: sha256:9ee3b83bcaa383e5e3b657f042f4034c92cdd50c03f73166c145c9ceaea9ba7c
Status: Downloaded newer image for ubuntu:16.04
root@7f989e4174aa:/#

Let’s install two packages fortune, cowsay, lolcat inside the container. But before that it’s alway good idea to update
the packages that are already existing in the ubuntu.

8.1. 1. Building Docker images 29

CyVerse Documentation, Release 0.1.0

root@7f989e4174aa:/# apt-get update
root@7f989e4174aa:/# apt-get install -y fortune cowsay lolcat

Now exit the container and run docker ps -a to check to see if the status of the container (which is exit in this case)

root@7f989e4174aa:/# exit

Go ahead and commit the changes and create a new image.

docker commit -m "Installed fortune cowsay lolcat" $(docker ps -lq) ubuntu/
→˓fortunecowsaylolcat
sha256:77ae42b823e60c2a350228d892aacda337e1e01c19c3ae72da104f7f4a77f83f

Congratulatios. You created your fist Docker image. Check to see your docker image in the list of images using docker
images. Let’s run a container using that newly created docker image

$ docker run ubuntu/fortunecowsaylolcat /usr/games/cowsay "Hi"

< Hi >

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

and another one

$ docker run ubuntu/fortunecowsay /usr/games/fortune
It's all in the mind, ya know.

Pretty cool isn’t it..

Exercise: Can you figure out a way to combine these two commands in this order fortune, cowsay and lolcat to print
what cowsay of the fortune output?

Hint: Use pipe and use interactive terminal

1.2.2 Using Dockerfile (recommended)

As you noticed by now that this method of making images is not reproducible. For example if you shae this image
with someone (we will see how it is done later), then they wouldn’t know what is installed in this image. Ofcourse
you can provide them with your notes but still it’s not reproducible. Rather than just running commands and installing
commands using apt-get install, we’ll put our instructions in a special file called the Dockerfile

What exactly is a Dockerfile?

A Dockerfile is a text document that contains all the commands a user could call on the command line to assemble
an image. Using docker build users can create an automated build that executes several command-line instructions in
succession. Let’s create a Dockerfile for the above image

Open up a text editor of your choice and type in the following commands and save it as Dockerfile

Tip: You can name your Dockerfile as anything but according to best practices it is recommended to name it as
Dockerfile for reasons we will see later

30 Chapter 8. Advanced Docker

https://docs.docker.com/engine/reference/builder/

CyVerse Documentation, Release 0.1.0

FROM ubuntu:16.04
MAINTAINER Upendra Devisetty <upendra@cyverse.org>
LABEL version="1.0" description="This Dockerfile is for building fortune cowsay
→˓lolcat ubuntu image"
RUN apt-get update
RUN apt-get install -y fortune cowsay lolcat

ENV PATH=/usr/games/:$PATH
CMD fortune | cowsay | lolcat

That’s it. Now building the Docker image using docker build command as below. The docker build command is
quite simple - it takes an optional tag name with the -t flag, and the location of the directory containing the Dockerfile
- the . indicates the current directory:

docker build -t ubuntu/fortunecowsaylolcat2 .
Sending build context to Docker daemon 2.048kB
Step 1/5 : FROM ubuntu:16.04
---> c9d990395902

Step 2/5 : MAINTAINER Upendra Devisetty <upendra@cyverse.org>
---> Running in a365c28eb283

Removing intermediate container a365c28eb283
---> 91d18ff89d44

Step 3/5 : LABEL Description "This Dockerfile is for building fortune coway ubuntu
→˓image"
---> Running in d24ff4a347fa

Removing intermediate container d24ff4a347fa
---> 73daa1277fea

Step 4/5 : RUN apt-get update
---> Running in eed1e2fe25de
..........
..........
Successfully built ffe89a681d5c

Successfully tagged ubuntu/fortunecowsaylolcat2:latest

Great! We successfully built a Docker image using Dockerfile. Let’s test it out by launching a container using docker
run.

$ docker run --rm ubuntu/fortunecowsaylolcat2:1.0

/ It was all so different before \
\ everything changed. /

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

Superb! So you have build a Docker image using Dockerfile. See how easy it is and it is also reproducible since you
know how it is built. In addition, you can version control (using git or others) this Dockerfile.

Before we go further, let’s look at what those commands in Dockerfile mean

FROM

This instruction is used to set the base image for subsequent instructions. It is mandatory to set this in the first line of
a Dockerfile. You can use it any number of times though.

MAINTAINER

8.1. 1. Building Docker images 31

CyVerse Documentation, Release 0.1.0

This is a non-executable instruction used to indicate the author of the Dockerfile.

LABEL

You can assign metadata in the form of key-value pairs to the image using this instruction. It is important to notice that
each LABEL instruction creates a new layer in the image, so it is best to use as few LABEL instructions as possible

RUN

This instruction lets you execute a command on top of an existing layer and create a new layer with the results of
command execution

CMD

This defines the commands that will run on the Image at start-up. Unlike a RUN, this does not create a new layer for
the Image, but simply runs the command. There can only be one CMD per a Dockerfile/Image. If you need to run
multiple commands, the best way to do that is to have the CMD run a script. CMD requires that you tell it where to
run the command, unlike RUN.

ENV

This defines Environmental variables (one or more) in the Docker image

WORKDIR

The WORKDIR directive is used to set where the command defined with CMD is to be executed.

ENTRYPOINT

This argument sets the concrete default application that is used every time a container is created using the image.
For example, if you have installed a specific application inside an image and you will use this image to only run that
application, you can state it with ENTRYPOINT and whenever a container is created from that image, your application
will be the target

Use case 1: Building a astroML Docker image

This is a minimal Docker image using astroML as an example. plot_spectrum_sum_of_norms.py is an
example script from astroML. It is modified to run better in a container environment.

$ mkdir astroML && cd astroML

$ wget https://de.cyverse.org/dl/d/2CE93196-0F91-414F-B532-0AC8D3AE032E/plot_spectrum_
→˓sum_of_norms.py

$ vi Dockerfile
FROM debian:stretch
MAINTAINER Upendra Devisetty <upendra@cyverse.org>
LABEL version="1.0" description="This image is for astroML"

The base image is minimal with very few software packages. We
udpate apt and install python-pip with recommanded packages here.
RUN apt-get -qq update &&\

apt-get install -y python-pip &&\
apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

Next, we install astroML's dependencies and astroML itself using pip.
RUN pip install numpy scipy scikit-learn matplotlib astropy &&\

pip install astroML astroML_addons

Change the default work directory to "/root" inside the container.
WORKDIR /root

Install Jupyter and other visualization packages

(continues on next page)

32 Chapter 8. Advanced Docker

CyVerse Documentation, Release 0.1.0

(continued from previous page)

RUN pip install jupyter ipywidgets &&\
jupyter nbextension enable --py --sys-prefix widgetsnbextension

COPY plot_spectrum_sum_of_norms.py /usr/bin
COPY run.sh /usr/bin
RUN chmod +x /usr/bin/plot_spectrum_sum_of_norms.py
RUN chmod +x /usr/bin/run.sh
ENTRYPOINT ["run.sh"]

$ vi run.sh
#!/bin/bash
plot_spectrum_sum_of_norms.py $1

Let’s build the image from the Dockerfile now

$ docker build -t debian/astroml:1.0 .

Now run the built image to execute first

$ docker run --rm -v ${PWD}:/root debian/astroml:1.0 test.pdf

The result is the pdf - test.pdf

Now remove the the two ouputs and run it with overriding the ENTRYPOINT

$ rm -r astroML_data test.pdf

$ docker run --rm -it -p 8888:8888 -v ${PWD}:/root --entrypoint jupyter-notebook
→˓debian/astroml:1.0 --allow-root --ip='*' --no-browser
[W 18:11:00.622 NotebookApp] WARNING: The notebook server is listening on all IP
→˓addresses and not using encryption. This is not recommended.
[I 18:11:00.629 NotebookApp] Serving notebooks from local directory: /root
[I 18:11:00.629 NotebookApp] 0 active kernels
[I 18:11:00.629 NotebookApp] The Jupyter Notebook is running at:
[I 18:11:00.629 NotebookApp] http://[all ip addresses on your system]:8888/?
→˓token=a2a9027494420d6151824ad23d930b91a37eeb44597454ac
[I 18:11:00.630 NotebookApp] Use Control-C to stop this server and shut down all
→˓kernels (twice to skip confirmation).
[C 18:11:00.633 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:

http://localhost:8888/?token=a2a9027494420d6151824ad23d930b91a37eeb44597454ac

• Exercise:

Create a new Jupyter notebook for the plot_spectrum_sum_of_norms.py script and execute it to make sure that all the
steps are working fine..

8.2 2. Docker registries

To demonstrate the portability of what we just created, let’s upload our built Docker image and run it somewhere else
(CyVerse Atmosphere cloud or Discovery Environment). After all, you’ll need to learn how to push to registries when
you want to deploy containers to production.

8.2. 2. Docker registries 33

CyVerse Documentation, Release 0.1.0

Important: So what exactly is a registry?

A registry is a collection of repositories, and a repository is a collection of images—sort of like a GitHub repository,
except the code is already built. An account on a registry can create many repositories. The docker CLI uses Docker’s
public registry by default. You can even set up your own private registry using Docker Trusted Registry

There are several things you can do with Docker registries:

• Pushing images

• Finding images

• Pulling images

• Sharing images

8.2.1 2.1 Public repositories

Some example of public registries include Docker cloud, Docker hub and quay.io etc.,

2.1.1 Log in with your Docker ID

Now that you’ve created and tested your image, you can push it to Docker cloud or Docker hub.

Note: If you don’t have a Docker account, sign up for one at Docker cloud or Docker hub. Make note of your
username. There are several advantages of registering to Dockerhub which we will see later on in the session

First you have to login to your Docker hub account. To do that:

$ docker login -u <dockerhub username>
Password:

Enter you Password when prompted.

2.1.2 Tag the image

The notation for associating a local image with a repository on a registry is username/repository:tag. The
tag is optional, but recommended, since it is the mechanism that registries use to give Docker images a version. Give
the repository and tag meaningful names for the context, such as get-started:part2. This will put the image in
the get-started repository and tag it as part2.

Note: By default the docker image gets a latest tag if you don’t provide one. Thought convenient, it is not
recommended for reproducibility purposes.

Now, put it all together to tag the image. Run docker tag image with your username, repository, and tag names so
that the image will upload to your desired destination. For our docker image since we already have our Dockerhub
username we will just add tag which in this case is 1.0

$ docker tag debian/astroml:1.0 <dockerhub username>/astroml:1.0

34 Chapter 8. Advanced Docker

https://cloud.docker.com/
https://hub.docker.com/
https://quay.io/
https://cloud.docker.com/
https://hub.docker.com/

CyVerse Documentation, Release 0.1.0

2.1.3 Publish the image

Upload your tagged image to the Dockerhub repository

$ docker push <dockerhub username>/astroml:1.0

Once complete, the results of this upload are publicly available. If you log in to Docker Hub, you will see the new
image there, with its pull command.

Congrats! You just made your first Docker image and shared it with the world!

2.1.4 Pull and run the image from the remote repository

Let’s try to run the image from the remote repository on Cloud server by logging into CyVerse Atmosphere, launching
an instance

First install Docker on Atmosphere using from here https://docs.docker.com/install/linux/
docker-ce/ubuntu or alternatively you can use ezd command which is a short-cut command for installing
Docker on Atmosphere

$ ezd

Now run the following command to run the docker image from Dockerhub

8.2. 2. Docker registries 35

../atmosphere/boot.html
../atmosphere/boot.html

CyVerse Documentation, Release 0.1.0

$ docker run --rm -v ${PWD}:/root upendradevisetty/astroml:1.0

Note: You don’t have to run docker pull since if the image isn’t available locally on the machine, Docker will
pull it from the repository.

8.2.2 2.2 Private repositories

In an earlier part, we had looked at the Docker Hub, which is a public registry that is hosted by Docker. While
the Dockerhub plays an important role in giving public visibility to your Docker images and for you to utilize quality
Docker images put up by others, there is a clear need to setup your own private registry too for your team/organization.
For example, CyVerse has it own private registry which will be used to push the Docker images.

2.2.1 Pull down the Registry Image

You might have guessed by now that the registry must be available as a Docker image from the Docker Hub and it
should be as simple as pulling the image down and running that. You are correct!

A Dockerhub search on the keyword registry brings up the following image as the top result:

36 Chapter 8. Advanced Docker

CyVerse Documentation, Release 0.1.0

Run a container from registry Dockerhub image

$ docker run -d -p 5000:5000 --name registry registry:2

Run docker ps -l to check the recent container from this Docker image

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED
→˓STATUS PORTS NAMES
6e44a0459373 registry:2 "/entrypoint.sh /e..." 11 seconds ago
→˓Up 10 seconds 0.0.0.0:5000->5000/tcp registry

2.2.2 Tag the image that you want to push

Next step is to tag your image under the registry namespace and push it there

$ REGISTRY=localhost:5000

$ docker tag upendradevisetty/astroml:1.0 $REGISTRY/$(whoami)/astroml:1.0

2.2.2 Publish the image into the local registry

Finally push the image to the local registry

$ docker push $REGISTRY/$(whoami)/astroml:1.0
The push refers to repository [localhost:5000/upendra_35/astroml]
dbc133154d04: Pushed
2efc0f8eb69d: Pushed
2ec163aac8ff: Pushed
0f3a12fef684: Pushed
1.0: digest: sha256:eba0beb8f735a8d32b74bed0e0194c0b04e6d15608c21736f819ca8ee06f83c5
→˓size: 1167

2.2.3 Pull and run the image from the local repository

You can also pull the image from the local repository similar to how you pull it from Dockerhub and run a container
from it

$ docker run --rm -p 8888:8888 -v ${PWD}:/root $REGISTRY/$(whoami)/astroml:1.0
[I 17:06:53.813 NotebookApp] Writing notebook server cookie secret to /root/.local/
→˓share/jupyter/runtime/notebook_cookie_secret
[W 17:06:54.094 NotebookApp] WARNING: The notebook server is listening on all IP
→˓addresses and not using encryption. This is not recommended.
[I 17:06:54.106 NotebookApp] Serving notebooks from local directory: /root
[I 17:06:54.106 NotebookApp] 0 active kernels
[I 17:06:54.106 NotebookApp] The Jupyter Notebook is running at:
[I 17:06:54.106 NotebookApp] http://[all ip addresses on your system]:8888/?
→˓token=b0ff6191b65f65a7bdc185597b4168e4f9755d06363dde62
[I 17:06:54.107 NotebookApp] Use Control-C to stop this server and shut down all
→˓kernels (twice to skip confirmation).
[C 17:06:54.110 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time,

(continues on next page)

8.2. 2. Docker registries 37

CyVerse Documentation, Release 0.1.0

(continued from previous page)

to login with a token:
http://localhost:8888/?token=b0ff6191b65f65a7bdc185597b4168e4f9755d06363dde62

8.3 3. Automated Docker image building from github

An automated build is a Docker image build that is triggered by a code change in a GitHub or Bitbucket repository.
By linking a remote code repository to a Dockerhub automated build repository, you can build a new Docker image
every time a code change is pushed to your code repository.

A build context is a Dockerfile and any files at a specific location. For an automated build, the build context is a
repository containing a Dockerfile.

Automated Builds have several advantages:

• Images built in this way are built exactly as specified.

• The Dockerfile is available to anyone with access to your Docker Hub repository.

• Your repository is kept up-to-date with code changes automatically.

• Automated Builds are supported for both public and private repositories on both GitHub and Bitbucket.

8.3.1 3.1 Prerequisites

To use automated builds, you first must have an account on Docker Hub and on the hosted repository provider (GitHub
or Bitbucket). While Dockerhub supports linking both GitHub and Bitbucket repositories, here we will use a GitHub
repository. If you don’t already have one, make sure you have a GitHub account. A basic account is free

Note:

• If you have previously linked your Github or Bitbucket account, you must have chosen the Public and Private
connection type. To view your current connection settings, log in to Docker Hub and choose Profile > Settings
> Linked Accounts & Services.

• Building Windows containers is not supported.

8.3.2 3.2 Link your Docker Hub account to GitHub

1. Log into Docker Hub.

2. Navigate to Profile > Settings > Linked Accounts & Services.

3. Click the Link GitHub. The system prompts you to choose between Public and Private and Limited Ac-
cess. The Public and Private connection type is required if you want to use the Automated Builds.

4. Press Select under Public and Private connection type. If you are not logged into GitHub, the system
prompts you to enter GitHub credentials before prompting you to grant access. After you grant access to your
code repository, the system returns you to Docker Hub and the link is complete.

After you grant access to your code repository, the system returns you to Docker Hub and the link is complete. For
example, github linked hosted repository looks like this:

38 Chapter 8. Advanced Docker

https://hub.docker.com
https://github.com/
https://bitbucket.org/
https://hub.docker.com/account/authorized-services/

CyVerse Documentation, Release 0.1.0

8.3.3 3.3 Create a new automated build

Automated build repositories rely on the integration with your github code repository to build.

Let’s create an automatic build for our astroML using the instructions below:

1. Initialize git repository for the flask-app directory

$ git init
Initialized empty Git repository in /Users/upendra_35/Downloads/docker_workshop/
→˓astroML/.git/

$ git add Dockerfile run.sh plot_spectrum_sum_of_norms.py && git commit -m"Add files
→˓and folders"
[master (root-commit) 3d85ec9] Add files and folders
3 files changed, 83 insertions(+)
create mode 100644 Dockerfile
create mode 100644 plot_spectrum_sum_of_norms.py
create mode 100644 run.sh

2. Create a new repository on github by navigating to this url - https://github.com/new

8.3. 3. Automated Docker image building from github 39

https://github.com/new

CyVerse Documentation, Release 0.1.0

3. Push the repository to github

40 Chapter 8. Advanced Docker

CyVerse Documentation, Release 0.1.0

$ git remote add origin https://github.com/upendrak/atroML.git
$ git push -u origin master

4. Select Create > Create Automated Build from Docker Hub.

• The system prompts you with a list of User/Organizations and code repositories.

• For now select your GitHub account from the User/Organizations list on the left. The list of repositories change.

• Pick the project to build. In this case atroML. Type in “AstroML docker image” in the Short Description box.

• If you have a long list of repos, use the filter box above the list to restrict the list. After you select the project,
the system displays the Create Automated Build dialog.

8.3. 3. Automated Docker image building from github 41

CyVerse Documentation, Release 0.1.0

Note: The dialog assumes some defaults which you can customize. By default, Docker builds images for each branch
in your repository. It assumes the Dockerfile lives at the root of your source. When it builds an image, Docker tags it
with the branch name.

5. Customize the automated build by pressing the Click here to customize behavior link.

42 Chapter 8. Advanced Docker

CyVerse Documentation, Release 0.1.0

Specify which code branches or tags to build from. You can build by a code branch or by an image tag. You can enter
a specific value or use a regex to select multiple values. To see examples of regex, press the Show More link on the
right of the page.

• Leave Push Type as Branch as is.

• Leave the Dockerfile location as is.

• Recall the file is in the root of your code repository.

• Specify 1.0 for the Tag Name.

6. Click Create.

Important: During the build process, Docker copies the contents of your Dockerfile to Docker Hub. The Docker
community (for public repositories) or approved team members/orgs (for private repositories) can then view the Dock-
erfile on your repository page.

The build process looks for a README.md in the same directory as your Dockerfile. If you have a README.md
file in your repository, it is used in the repository as the full description. If you change the full description after a
build, it’s overwritten the next time the Automated Build runs. To make changes, modify the README.md in your
Git repository.

8.3. 3. Automated Docker image building from github 43

CyVerse Documentation, Release 0.1.0

Warning: You can only trigger one build at a time and no more than one every five minutes. If you already have
a build pending, or if you recently submitted a build request, Docker ignores new requests.

It can take a few minutes for your automated build job to be created. When the system is finished, it places you in the
detail page for your Automated Build repository.

7. Manually Trigger a Build

Before you trigger an automated build by pushing to your GitHub astroML repo, you’ll trigger a manual build.
Triggering a manual build ensures everything is working correctly.

From your automated build page choose Build Settings

Press Trigger button and finally click Save Changes.

Note: Docker builds everything listed whenever a push is made to the code repository. If you specify a particular
branch or tag, you can manually build that image by pressing the Trigger. If you use a regular expression syntax
(regex) to define your build branch or tag, Docker does not give you the option to manually build.

8. Review the build results

The Build Details page shows a log of your build systems:

44 Chapter 8. Advanced Docker

CyVerse Documentation, Release 0.1.0

Navigate to the Build Details page.

Wait until your image build is done.

You may have to manually refresh the page and your build may take several minutes to complete.

8.4 4. Docker Compose for multi container apps

Docker Compose is a tool for defining and running your multi-container Docker applications.

Main advantages of Docker compose include:

• Your applications can be defined in a YAML file where all the options that you used in docker run are now
defined (Reproducibility).

• It allows you to manage your application as a single entity rather than dealing with individual containers (Sim-
plicity).

Let’s now create a simple web app with Docker Compose using Flask (which you already seen before) and Redis. We
will end up with a Flask container and a Redis container all on one host.

Note: The code for the above compose example is available here

8.4. 4. Docker Compose for multi container apps 45

https://github.com/upendrak/compose_flask

CyVerse Documentation, Release 0.1.0

1. You’ll need a directory for your project on your host machine:

$ mkdir compose_flask && cd compose_flask

2. Add the following to requirements.txt inside compose_flask directory:

flask
redis

3. Copy and paste the following code into a new file called app.py inside compose_flask directory:

from flask import Flask
from redis import Redis

app = Flask(__name__)
redis = Redis(host='redis', port=6379)

@app.route('/')
def hello():

redis.incr('hits')
return 'This Compose/Flask demo has been viewed %s time(s).' % redis.get('hits')

if __name__ == "__main__":
app.run(host="0.0.0.0", debug=True)

4. Create a Dockerfile with the following code inside compose_flask directory:

FROM python:2.7
ADD . /code
WORKDIR /code
RUN pip install -r requirements.txt
CMD python app.py

5. Add the following code to a new file, docker-compose.yml, in your project directory:

version: '2'
services:

web:
restart: always
build: .
ports:

- "8888:5000"
volumes:

- .:/code
depends_on:

- redis
redis:

restart: always
image: redis

A brief explanation of docker-compose.yml is as below:

• restart: always means that it will restart whenever it fails.

• We define two services, web and redis.

• The web service builds from the Dockerfile in the current directory.

• Forwards the container’s exposed port (5000) to port 8888 on the host.

46 Chapter 8. Advanced Docker

CyVerse Documentation, Release 0.1.0

• Mounts the project directory on the host to /code inside the container (allowing you to modify the code without
having to rebuild the image).

• depends_on links the web service to the Redis service.

• The redis service uses the latest Redis image from Docker Hub.

Note: Docker for Mac and Docker Toolbox already include Compose along with other Docker apps, so Mac users
do not need to install Compose separately. Docker for Windows and Docker Toolbox already include Compose along
with other Docker apps, so most Windows users do not need to install Compose separately.

For Linux users

sudo curl -L https://github.com/docker/compose/releases/download/1.19.0/docker-
→˓compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

5. Build and Run with docker-compose up -d command

$ docker-compose up -d

Building web
Step 1/5 : FROM python:2.7
2.7: Pulling from library/python
f49cf87b52c1: Already exists
7b491c575b06: Already exists
b313b08bab3b: Already exists
51d6678c3f0e: Already exists
09f35bd58db2: Already exists
f7e0c30e74c6: Pull complete
c308c099d654: Pull complete
339478b61728: Pull complete
Digest: sha256:8cb593cb9cd1834429f0b4953a25617a8457e2c79b3e111c0f70bffd21acc467
Status: Downloaded newer image for python:2.7
---> 9e92c8430ba0

Step 2/5 : ADD . /code
---> 746bcecfc3c9

Step 3/5 : WORKDIR /code
---> c4cf3d6cb147

Removing intermediate container 84d850371a36
Step 4/5 : RUN pip install -r requirements.txt
---> Running in d74c2e1cfbf7

Collecting flask (from -r requirements.txt (line 1))
Downloading Flask-0.12.2-py2.py3-none-any.whl (83kB)

Collecting redis (from -r requirements.txt (line 2))
Downloading redis-2.10.6-py2.py3-none-any.whl (64kB)

Collecting itsdangerous>=0.21 (from flask->-r requirements.txt (line 1))
Downloading itsdangerous-0.24.tar.gz (46kB)

Collecting Jinja2>=2.4 (from flask->-r requirements.txt (line 1))
Downloading Jinja2-2.10-py2.py3-none-any.whl (126kB)

Collecting Werkzeug>=0.7 (from flask->-r requirements.txt (line 1))
Downloading Werkzeug-0.14.1-py2.py3-none-any.whl (322kB)

Collecting click>=2.0 (from flask->-r requirements.txt (line 1))
Downloading click-6.7-py2.py3-none-any.whl (71kB)

Collecting MarkupSafe>=0.23 (from Jinja2>=2.4->flask->-r requirements.txt (line 1))
Downloading MarkupSafe-1.0.tar.gz

(continues on next page)

8.4. 4. Docker Compose for multi container apps 47

CyVerse Documentation, Release 0.1.0

(continued from previous page)

Building wheels for collected packages: itsdangerous, MarkupSafe
Running setup.py bdist_wheel for itsdangerous: started
Running setup.py bdist_wheel for itsdangerous: finished with status 'done'
Stored in directory: /root/.cache/pip/wheels/fc/a8/66/

→˓24d655233c757e178d45dea2de22a04c6d92766abfb741129a
Running setup.py bdist_wheel for MarkupSafe: started
Running setup.py bdist_wheel for MarkupSafe: finished with status 'done'
Stored in directory: /root/.cache/pip/wheels/88/a7/30/

→˓e39a54a87bcbe25308fa3ca64e8ddc75d9b3e5afa21ee32d57
Successfully built itsdangerous MarkupSafe
Installing collected packages: itsdangerous, MarkupSafe, Jinja2, Werkzeug, click,
→˓flask, redis
Successfully installed Jinja2-2.10 MarkupSafe-1.0 Werkzeug-0.14.1 click-6.7 flask-0.
→˓12.2 itsdangerous-0.24 redis-2.10.6
---> 5cc574ff32ed

Removing intermediate container d74c2e1cfbf7
Step 5/5 : CMD python app.py
---> Running in 3ddb7040e8be
---> e911b8e8979f

Removing intermediate container 3ddb7040e8be
Successfully built e911b8e8979f
Successfully tagged composeflask_web:latest

And that’s it! You should be able to see the Flask application running on http://localhost:8888 or
<ipaddress>:8888

48 Chapter 8. Advanced Docker

CyVerse Documentation, Release 0.1.0

8.4. 4. Docker Compose for multi container apps 49

CyVerse Documentation, Release 0.1.0

50 Chapter 8. Advanced Docker

CHAPTER 9

Additional Docker Demo’s

9.1 1. Portainer

Portainer is an open-source lightweight management UI which allows you to easily manage your Docker hosts or
Swarm cluster.

• Simple to use: It has never been so easy to manage Docker. Portainer provides a detailed overview of Docker
and allows you to manage containers, images, networks and volumes. It is also really easy to deploy, you are
just one Docker command away from running Portainer anywhere.

• Made for Docker: Portainer is meant to be plugged on top of the Docker API. It has support for the latest
versions of Docker, Docker Swarm and Swarm mode.

9.1.1 7.1 Installation

Use the following Docker commands to deploy Portainer. Now the second line of command should be familiar to you
by now. We will talk about first line of command in the Advanced Docker session.

$ docker volume create portainer_data

$ docker run -d -p 9000:9000 -v /var/run/docker.sock:/var/run/docker.sock -v
→˓portainer_data:/data portainer/portainer

• If you are on mac, you’ll just need to access the port 9000 (http://localhost:9000) of the Docker engine where
portainer is running using username admin and password tryportainer

• If you are running Docker on Atmosphere/Jetstream or on any other cloud, you can open ipaddress:9000.
For my case this is http://128.196.142.26:9000

Note: The -v /var/run/docker.sock:/var/run/docker.sock option can be used in mac/linux environments only.

51

https://portainer.io/
http://localhost:9000

CyVerse Documentation, Release 0.1.0

9.2 2 Play-with-docker (PWD)

PWD is a Docker playground which allows users to run Docker commands in a matter of seconds. It gives the
experience of having a free Alpine Linux Virtual Machine in browser, where you can build and run Docker containers
and even create clusters in Docker Swarm Mode. Under the hood, Docker-in-Docker (DinD) is used to give the effect
of multiple VMs/PCs. In addition to the playground, PWD also includes a training site composed of a large set of
Docker labs and quizzes from beginner to advanced level available at training.play-with-docker.com.

9.2.1 2.1 Installation

You don’t have to install anything to use PWD. Just open https://labs.play-with-docker.com/ and start
using PWD

Note: You can use your Dockerhub credentials to log-in to PWD

52 Chapter 9. Additional Docker Demo’s

http://www.play-with-docker.com/
https://docs.docker.com/engine/swarm/
http://training.play-with-docker.com/

CyVerse Documentation, Release 0.1.0

9.2. 2 Play-with-docker (PWD) 53

CyVerse Documentation, Release 0.1.0

54 Chapter 9. Additional Docker Demo’s

CHAPTER 10

Introduction to Singularity

10.1 1. Prerequisites

There are no specific skills needed for this tutorial beyond a basic comfort with the command line and using a text
editor. Prior experience developing web applications could be helpful but is not required.

Note:

Important: Docker and Singularity are friends but they have distinct differences.

For more information see: Singularity Related Resources

Docker:

• Inside a Docker container the user has escalated privileges, effectively making them root on the
host system. This is not supported by most administrators of High Performance Computing (HPC)
centers.

Singularity:

55

http://singularity.lbl.gov/docs-docker
https://cyverse-container-camp-workshop-2018.readthedocs-hosted.com/en/latest/useful_resources/usefulresources_singularity.html

CyVerse Documentation, Release 0.1.0

• Works on HPC systems

• Same user inside and outside the container

• User only has root privileges if elevated with sudo

• Run (and modify!) existing Docker containers

Singularity uses a ‘flow’ whereby you can (1) create and modify images on your dev system, (2) build containers using
recipes or pulling from repositories, and (3) execute containers on production systems.

10.2 2. Singularity installation

Local installations of Singularity are useful for testing out new containers, before pushing them to Singularity-Hub.

56 Chapter 10. Introduction to Singularity

CyVerse Documentation, Release 0.1.0

If you plan to use Singularity on HPC you will need a local installation of Singularity to build your own containers.
HPC admins are very unlikely to grant you sudo privileges needed to build your own containers there.

10.2.1 Exercise 1 (15-20 mins)

10.2.2 2.1 Setting up your Laptop

To Install Singularity on your laptop or desktop PC follow the instructions from Singularity:

• Windows

• Linux

• Mac

Note: on Mac OS X the dependency VagrantBox is required to run Singularity

10.2.3 2.2 HPC

If you are interested in working on the UA HPC, you can load Singularity as a module. Many HPC systems are running
Environment Modules with the simple command module. You can check to see what is available on an HPC with
the command:

$ module avail

If Singularity is installed:

$ module load singularity

If you want to run Singularity on a different HPC, check their documentation. Else, you may need to contact the
systems administrator and request they install the latest version of Singularity.

10.2.4 2.3 XSEDE Jetstream / CyVerse Atmosphere Clouds

CyVerse staff have deployed an Ansible playbooks called ez installation which includes Singularity that only requires
you to type a short line of code.

Start a featured instance on Atmosphere or Jetstream.

Type in the following:

$ ezs

* Updating ez singularity and installing singularity (this may take a few minutes,
→˓coffee break!)
Cloning into '/opt/cyverse-ez-singularity'...
remote: Counting objects: 11, done.
remote: Total 11 (delta 0), reused 0 (delta 0), pack-reused 11
Unpacking objects: 100% (11/11), done.
Checking connectivity... done.

10.2. 2. Singularity installation 57

http://singularity.lbl.gov/install-windows
http://singularity.lbl.gov/install-linux
http://singularity.lbl.gov/install-mac
https://app.vagrantup.com/singularityware/boxes/singularity-2.4/versions/2.4
http://singularity.lbl.gov/install-request
https://cyverse-ez-quickstart.readthedocs-hosted.com/en/latest/

CyVerse Documentation, Release 0.1.0

10.2.5 2.4 Check Installation

Singularity should now be installed on your laptop or VM, or loaded on the HPC, you can check the installation with:

$ singularity pull shub://vsoch/hello-world
Progress |===================================| 100.0%
Done. Container is at: /tmp/vsoch-hello-world-master.simg

$ singularity run vsoch-hello-world-master.simg
RaawwWWWWWRRRR!!

View the Singularity help:

$ singularity --help

USAGE: singularity [global options...] <command> [command options...] ...

GLOBAL OPTIONS:
-d|--debug Print debugging information
-h|--help Display usage summary
-s|--silent Only print errors
-q|--quiet Suppress all normal output

--version Show application version
-v|--verbose Increase verbosity +1
-x|--sh-debug Print shell wrapper debugging information

GENERAL COMMANDS:
help Show additional help for a command or container
selftest Run some self tests for singularity install

CONTAINER USAGE COMMANDS:
exec Execute a command within container
run Launch a runscript within container
shell Run a Bourne shell within container
test Launch a testscript within container

CONTAINER MANAGEMENT COMMANDS:
apps List available apps within a container
bootstrap *Deprecated* use build instead
build Build a new Singularity container
check Perform container lint checks
inspect Display container's metadata
mount Mount a Singularity container image
pull Pull a Singularity/Docker container to $PWD

COMMAND GROUPS:
image Container image command group
instance Persistent instance command group

CONTAINER USAGE OPTIONS:
see singularity help <command>

For any additional help or support visit the Singularity
website: http://singularity.lbl.gov/

58 Chapter 10. Introduction to Singularity

CyVerse Documentation, Release 0.1.0

10.3 3. Downloading Singularity containers

The easiest way to use a Singularity container is to pull an existing container from one of the Container Registries
maintained by the Singularity group.

10.3.1 Exercise 2 (~10 mins)

10.3.2 3.1: Pulling a Container from Singularity Hub

You can use the pull command to download pre-built images from a number of Container Registries, here we’ll be
focusing on the Singularity-Hub or DockerHub.

Container Registries:

• shub - images hosted on Singularity Hub

• docker - images hosted on Docker Hub

• localimage - images saved on your machine

• yum - yum based systems such as CentOS and Scientific Linux

• debootstrap - apt based systems such as Debian and Ubuntu

• arch - Arch Linux

• busybox - BusyBox

• zypper - zypper based systems such as Suse and OpenSuse

In this example I am pulling a base Ubuntu container from Singularity-Hub:

$ singularity pull shub://singularityhub/ubuntu

You can rename the container using the –name flag:

$ singularity pull --name ubuntu_test.simg shub://singularityhub/ubuntu

After your image has finished downloading it should be in the present working directory, unless you specified to
download it somewhere else.

$ singularity pull --name ubuntu_test.simg shub://singularityhub/ubuntu
Progress |===================================| 100.0%
Done. Container is at: /home/***/ubuntu_test.simg
$ singularity run ubuntu_test.simg
This is what happens when you run the container...
$ singularity shell ubuntu_test.simg
Singularity: Invoking an interactive shell within container...

Singularity ubuntu_test.simg:~> cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=trusty
DISTRIB_DESCRIPTION="Ubuntu 14.04 LTS"
NAME="Ubuntu"
VERSION="14.04, Trusty Tahr"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 14.04 LTS"

(continues on next page)

10.3. 3. Downloading Singularity containers 59

https://www.singularity-hub.org
https://hub.docker.com/

CyVerse Documentation, Release 0.1.0

(continued from previous page)

VERSION_ID="14.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
Singularity ubuntu_test.simg:~>

10.3.3 3.2: Pulling containers from Docker Hub

This example pulls a container from DockerHub

Build to your container by pulling an image from Docker:

$ singularity pull docker://ubuntu:16.04
WARNING: pull for Docker Hub is not guaranteed to produce the
WARNING: same image on repeated pull. Use Singularity Registry
WARNING: (shub://) to pull exactly equivalent images.
Docker image path: index.docker.io/library/ubuntu:16.04
Cache folder set to /home/.../.singularity/docker
[5/5] |===================================| 100.0%
Importing: base Singularity environment
Importing: /home/.../.singularity/docker/
→˓sha256:1be7f2b886e89a58e59c4e685fcc5905a26ddef3201f290b96f1eff7d778e122.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:6fbc4a21b806838b63b774b338c6ad19d696a9e655f50b4e358cc4006c3baa79.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:c71a6f8e13782fed125f2247931c3eb20cc0e6428a5d79edb546f1f1405f0e49.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:4be3072e5a37392e32f632bb234c0b461ff5675ab7e362afad6359fbd36884af.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:06c6d2f5970057aef3aef6da60f0fde280db1c077f0cd88ca33ec1a70a9c7b58.tar.gz
Importing: /home/.../.singularity/metadata/
→˓sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Building Singularity image...
Singularity container built: ./ubuntu-16.04.simg
Cleaning up...
Done. Container is at: ./ubuntu-16.04.simg

Note, there are some Warning messages concerning the build from Docker.

The example below does the same as above, but renames the image.

$ singularity pull --name ubuntu_docker.simg docker://ubuntu
Importing: /home/***/.singularity/docker/
→˓sha256:c71a6f8e13782fed125f2247931c3eb20cc0e6428a5d79edb546f1f1405f0e49.tar.gz
Importing: /home/***/.singularity/docker/
→˓sha256:4be3072e5a37392e32f632bb234c0b461ff5675ab7e362afad6359fbd36884af.tar.gz
Importing: /home/***/.singularity/docker/
→˓sha256:06c6d2f5970057aef3aef6da60f0fde280db1c077f0cd88ca33ec1a70a9c7b58.tar.gz
Importing: /home/***/.singularity/metadata/
→˓sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Building Singularity image...
Singularity container built: ./ubuntu_docker.simg

(continues on next page)

60 Chapter 10. Introduction to Singularity

CyVerse Documentation, Release 0.1.0

(continued from previous page)

Cleaning up...
Done. Container is at: ./ubuntu_docker.simg

When we run this particular Docker container, without any runtime arguments notice that it does not return any
notifications, and the Bash prompt does not change the prompt.

$ singularity run ubuntu_docker.simg
$ cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.04.3 LTS"
NAME="Ubuntu"
VERSION="16.04.3 LTS (Xenial Xerus)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 16.04.3 LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial

Whoa, we’re inside the container!?! This is the OS on the VM I tested this on:

$ exit
exit
$ cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.04.1 LTS"
NAME="Ubuntu"
VERSION="16.04.1 LTS (Xenial Xerus)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 16.04.1 LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial

By exiting, I can check the OS again to make sure that everything is back. Here we are back in the container using teh
shell invocation:

$ singularity shell ubuntu_docker.simg
Singularity: Invoking an interactive shell within container...

Singularity ubuntu_docker.simg:~> cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.04.3 LTS"

(continues on next page)

10.3. 3. Downloading Singularity containers 61

CyVerse Documentation, Release 0.1.0

(continued from previous page)

NAME="Ubuntu"
VERSION="16.04.3 LTS (Xenial Xerus)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 16.04.3 LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial
Singularity ubuntu_docker.simg:~>

When starting a container, make sure that it notifies you it is running. This is typically achieved by the basic $ prompt
providing some metadata:

Singularity ubuntu_docker.simg:~>

Keeping track of downloaded images may be necessary if space is a concern.

10.3.4 3.3: Keeping track of downloaded containers

By default, Singularity uses a temporary cache to hold Docker tarballs:

$ ls ~/.singularity

You can change these by specifying the location of the cache and temporary directory on your localhost:

$ sudo mkdir tmp
$ sudo mkdir scratch

$ SINGULARITY_TMPDIR=$PWD/scratch SINGULARITY_CACHEDIR=$PWD/tmp singularity --debug
→˓pull --name ubuntu-tmpdir.simg docker://ubuntu

As an example, using Singularity we can run a UI program that was built from Docker, here I show the IDE RStudio
tidyverse from Rocker

$ singularity exec docker://rocker/tidyverse:latest R

“An Introduction to Rocker: Docker Containers for R by Carl Boettiger, Dirk Eddelbuettel”

10.4 4. Building Singularity containers

Like Docker, which uses a dockerfile to build its containers, Singularity uses a file called Singularity

When you are building locally, you can name this file whatever you wish, but a better practice is to put it in a directory
and name it Singularity - as this will help later on when developing on Singularity-Hub and Github.

Create Container and add content to it:

$ singularity image.create ubuntu14.simg
Creating empty 768MiB image file: ubuntu14.simg
Formatting image with ext3 file system

(continues on next page)

62 Chapter 10. Introduction to Singularity

https://hub.docker.com/r/rocker/rstudio/
https://journal.r-project.org/archive/2017/RJ-2017-065/RJ-2017-065.pdf

CyVerse Documentation, Release 0.1.0

(continued from previous page)

Image is done: ubuntu14.simg

$ singularity build ubuntu14.simg docker://ubuntu:14.04
Building into existing container: ubuntu14.simg
Docker image path: index.docker.io/library/ubuntu:14.04
Cache folder set to /home/.../.singularity/docker
[5/5] |===================================| 100.0%
Importing: base Singularity environment
Importing: /home/.../.singularity/docker/
→˓sha256:c954d15f947c57e059f67a156ff2e4c36f4f3e59b37467ff865214a88ebc54d6.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:c3688624ef2b94ab3981564e23e1f48df8f1b988519373ccfb79d7974017cb85.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:848fe4263b3b44987f0eacdb2fc0469ae6ff04b2311e759985dfd27ae5d3641d.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:23b4459d3b04aa0bc7cb7f7021e4d7bbb5e87aa74a6a5f57475a0e8badbd9a26.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:36ab3b56c8f1a3188464886cbe41f42a969e6f9374e040f13803d796ed27b0ec.tar.gz
Importing: /home/.../.singularity/metadata/
→˓sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Building Singularity image...
Singularity container built: ubuntu14.simg
Cleaning up...

Note, image.create uses an ext3 file system

Create a container using a custom Singularity file:

$ singularity build --name ubuntu.simg Singularity

In the above command:

• –name will create a container named ubuntu.simg

Pull a Container from Docker and make it writable using the –writable flag:

$ sudo singularity build --writable ubuntu.simg docker://ubuntu

Docker image path: index.docker.io/library/ubuntu:latest
Cache folder set to /root/.singularity/docker
Importing: base Singularity environment
Importing: /root/.singularity/docker/
→˓sha256:1be7f2b886e89a58e59c4e685fcc5905a26ddef3201f290b96f1eff7d778e122.tar.gz
Importing: /root/.singularity/docker/
→˓sha256:6fbc4a21b806838b63b774b338c6ad19d696a9e655f50b4e358cc4006c3baa79.tar.gz
Importing: /root/.singularity/docker/
→˓sha256:c71a6f8e13782fed125f2247931c3eb20cc0e6428a5d79edb546f1f1405f0e49.tar.gz
Importing: /root/.singularity/docker/
→˓sha256:4be3072e5a37392e32f632bb234c0b461ff5675ab7e362afad6359fbd36884af.tar.gz
Importing: /root/.singularity/docker/
→˓sha256:06c6d2f5970057aef3aef6da60f0fde280db1c077f0cd88ca33ec1a70a9c7b58.tar.gz
Importing: /root/.singularity/metadata/
→˓sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
Creating empty Singularity writable container 120MB
Creating empty 150MiB image file: ubuntu.simg
Formatting image with ext3 file system

(continues on next page)

10.4. 4. Building Singularity containers 63

CyVerse Documentation, Release 0.1.0

(continued from previous page)

Image is done: ubuntu.simg
Building Singularity image...
Singularity container built: ubuntu.simg
Cleaning up...

$ singularity shell ubuntu.simg

Singularity: Invoking an interactive shell within container...

Singularity ubuntu.simg:~> apt-get update

Reading package lists... Done
W: chmod 0700 of directory /var/lib/apt/lists/partial failed -
→˓SetupAPTPartialDirectory (1: Operation not permitted)
E: Could not open lock file /var/lib/apt/lists/lock - open (13: Permission denied)
E: Unable to lock directory /var/lib/apt/lists/
Singularity ubuntu.simg:~> exit
exit

$ sudo singularity shell ubuntu.simg

Singularity: Invoking an interactive shell within container...

Singularity ubuntu.simg:~> apt-get update

Hit:1 http://archive.ubuntu.com/ubuntu xenial InRelease
Get:2 http://security.ubuntu.com/ubuntu xenial-security InRelease [102 kB]
Get:3 http://archive.ubuntu.com/ubuntu xenial-updates InRelease [102 kB]
Get:4 http://archive.ubuntu.com/ubuntu xenial-backports InRelease [102 kB]
Get:5 http://security.ubuntu.com/ubuntu xenial-security/universe Sources [73.2 kB]
Get:6 http://archive.ubuntu.com/ubuntu xenial/universe Sources [9802 kB]
Get:7 http://security.ubuntu.com/ubuntu xenial-security/main amd64 Packages [585 kB]
Get:8 http://security.ubuntu.com/ubuntu xenial-security/universe amd64 Packages [405
→˓kB]
Get:9 http://security.ubuntu.com/ubuntu xenial-security/multiverse amd64 Packages
→˓[3486 B]
Get:10 http://archive.ubuntu.com/ubuntu xenial/universe amd64 Packages [9827 kB]
Get:11 http://archive.ubuntu.com/ubuntu xenial/multiverse amd64 Packages [176 kB]
Get:12 http://archive.ubuntu.com/ubuntu xenial-updates/universe Sources [241 kB]
Get:13 http://archive.ubuntu.com/ubuntu xenial-updates/main amd64 Packages [953 kB]
Get:14 http://archive.ubuntu.com/ubuntu xenial-updates/restricted amd64 Packages [13.
→˓1 kB]
Get:15 http://archive.ubuntu.com/ubuntu xenial-updates/universe amd64 Packages [762
→˓kB]
Get:16 http://archive.ubuntu.com/ubuntu xenial-updates/multiverse amd64 Packages [18.
→˓5 kB]
Get:17 http://archive.ubuntu.com/ubuntu xenial-backports/main amd64 Packages [5153 B]
Get:18 http://archive.ubuntu.com/ubuntu xenial-backports/universe amd64 Packages
→˓[7168 B]
Fetched 23.2 MB in 4s (5569 kB/s)
Reading package lists... Done

Singularity ubuntu.simg:~> apt-get install curl --fix-missing

When I try to install software to the image without sudo it is denied, because root is the owner of the container. When
I use sudo I can install software to the container. The software remain in the container after closing the container and
restart.

64 Chapter 10. Introduction to Singularity

CyVerse Documentation, Release 0.1.0

Note: Bootstrapping bootstrap command is deprecated (v2.4), use build instead.

To install a container with Ubuntu from the ubuntu.com reposutiry you need to use debootstrap

10.4.1 4.1: Docker2Singularity & Singularity2Docker

One of the other features of Singularity is the ability to convert Docker containers to Singularity Containers, and
Singularity containers to Docker containers

10.4.2 4.2: Exercise 3 (30 minutes): Create the Singularity file

Recipes can use any number of container registries for bootstrapping a container.

(Advanced) the Singularity file can be hosted on Github and will be auto-detected by Singularity-Hub when you set
up your Container Collection.

Building your own containers requires that you have sudo privileges - therefore you’ll need to develop these on your
local machine or on a VM that you can gain root access on.

• The Header

The top of the file, selects the base OS for the container. Bootstrap: references the repository (e.g. docker, debootstrap,
sub). From: selects the name of the owner/container.

Bootstrap: shub
From: vsoch/hello-world

Using debootstrap with a build that uses a mirror:

BootStrap: debootstrap
OSVersion: xenial
MirrorURL: http://us.archive.ubuntu.com/ubuntu/

Using a localimage to build:

Bootstrap: localimage
From: /path/to/container/file/or/directory

Using CentOS-like container:

Bootstrap: yum
OSVersion: 7
MirrorURL: http://mirror.centos.org/centos-7/7/os/x86_64/
Include:yum

Note: to use yum to build a container you should be operating on a RHEL system, or an Ubuntu system with yum
installed.

The container registries which Singularity uses are listed above in Section 3.1.

• The Singularity file uses sections to specify the dependencies, environmental settings, and runscripts when it
build.

• %help - create text for a help menu associated with your container

• %setup - executed on the host system outside of the container, after the base OS has been installed.

10.4. 4. Building Singularity containers 65

https://github.com/singularityware/docker2singularity
https://github.com/vsoch/singularity2docker
http://singularity.lbl.gov/docs-recipes

CyVerse Documentation, Release 0.1.0

• %files - copy files from your host system into the container

• %labels - store metadata in the container

• %environment - loads environment variables at the time the container is run (not built)

• %post - set environment variables during the build

• %runscript - executes a script when the container runs

• %test - runs a test on the build of the container

• Apps

In Singularity 2.4+ we can build a container which does multiple things, e.g. each app has its own runscripts. These
use the prefix %app before the sections mentioned above. The %app architecture can exist in addition to the regular
%post and %runscript sections.

Bootstrap: docker
From: ubuntu

% environment

%labels

##############################
foo
##############################

%apprun foo
exec echo "RUNNING FOO"

%applabels foo
BESTAPP=FOO
export BESTAPP

%appinstall foo
touch foo.exec

%appenv foo
SOFTWARE=foo
export SOFTWARE

%apphelp foo
This is the help for foo.

%appfiles foo
avocados.txt

##############################
bar
##############################

%apphelp bar
This is the help for bar.

%applabels bar
BESTAPP=BAR
export BESTAPP

(continues on next page)

66 Chapter 10. Introduction to Singularity

CyVerse Documentation, Release 0.1.0

(continued from previous page)

%appinstall bar
touch bar.exec

%appenv bar
SOFTWARE=bar
export SOFTWARE

• Setting up Singularity file system

%help section can be as verbose as you want

Bootstrap: docker
From: ubuntu

%help
This is the container help section.

%setup commands are executed on the localhost system outside of the container - these files could include necessary
build dependencies. We can copy files to the $SINGULARITY_ROOTFS file system can be done during %setup

%files include any files that you want to copy from your localhost into the container.

%post includes all of the environment variables and dependencies that you want to see installed into the container at
build time.

%environment includes the environment variables which we want to be run when we start the container

%runscript does what it says, it executes a set of commands when the container is run.

Example Singularity file bootstrapping a Docker Ubuntu (16.04) image.

BootStrap: docker
From: ubuntu:16.04

%post
apt-get -y update
apt-get -y install fortune cowsay lolcat

create bind points for additional storage
mkdir /scratch

%environment
export LC_ALL=C
export PATH=/usr/games:$PATH

%runscript
fortune | cowsay | lolcat

%labels
Maintainer Tyson Swetnam
Version v0.1

Build the container:

singularity build --name cowsay_container.simg Singularity

Run the container:

10.4. 4. Building Singularity containers 67

https://hub.docker.com/_/ubuntu/

CyVerse Documentation, Release 0.1.0

singularity run cowsay.simg

If you build a squashfs container, it is immutable (you cannot –writable edit it)

10.5 5. Running Singularity containers

Commands:

exec - command allows you to execute a custom command within a container by specifying the image file.

shell - command allows you to spawn a new shell within your container and interact with it.

run - assumes your container is set up with “runscripts” triggered with the run command, or simply by calling the
container as though it were an executable.

inspect - inspects the container.

–writable - creates a writable container that you can edit interactively and save on exit.

–sandbox - copies the guts of the container into a directory structure.

10.5.1 5.1 Using the exec command

$ singularity exec shub://singularityhub/ubuntu cat /etc/os-release

10.5.2 5.2 Using the shell command

$ singularity shell shub://singularityhub/ubuntu

10.5.3 5.3 Using the run command

$ singularity run shub://singularityhub/ubuntu

10.5.4 5.4 Using the inspect command

You can inspect the build of your container using the inspect command

$ singularity pull shub://vsoch/hello-world
Progress |===================================| 100.0%
Done. Container is at: /home/***/vsoch-hello-world-master-latest.simg

$ singularity inspect vsoch-hello-world-master-latest.simg
{

"org.label-schema.usage.singularity.deffile.bootstrap": "docker",
"MAINTAINER": "vanessasaur",
"org.label-schema.usage.singularity.deffile": "Singularity",
"org.label-schema.schema-version": "1.0",
"WHATAMI": "dinosaur",
"org.label-schema.usage.singularity.deffile.from": "ubuntu:14.04",
"org.label-schema.build-date": "2017-10-15T12:52:56+00:00",

(continues on next page)

68 Chapter 10. Introduction to Singularity

CyVerse Documentation, Release 0.1.0

(continued from previous page)

"org.label-schema.usage.singularity.version": "2.4-feature-squashbuild-secbuild.
→˓g780c84d",

"org.label-schema.build-size": "333MB"
}

10.5.5 5.5 Using the –sandbox and –writable commands

As of Singularity v2.4 by default build produces immutable images in the ‘squashfs’ file format. This ensures repro-
ducible and verifiable images.

Creating a –writable image must use the sudo command, thus the owner of the container is root

$ sudo singularity build --writable ubuntu-master.simg shub://singularityhub/ubuntu
Cache folder set to /root/.singularity/shub
Progress |===================================| 100.0%
Building from local image: /root/.singularity/shub/singularityhub-ubuntu-master-
→˓latest.simg
Creating empty Singularity writable container 208MB
Creating empty 260MiB image file: ubuntu-master.simg
Formatting image with ext3 file system
Image is done: ubuntu-master.simg
Building Singularity image...
Singularity container built: ubuntu-master.simg
Cleaning up...

You can convert these images to writable versions using the –writable and –sandbox commands.

When you use the –sandbox the container is written into a directory structure. Sandbox folders can be created without
the sudo command.

$ singularity build --sandbox lolcow/ shub://GodloveD/lolcow
WARNING: Building sandbox as non-root may result in wrong file permissions
Cache folder set to /home/.../.singularity/shub
Progress |===================================| 100.0%
Building from local image: /home/.../.singularity/shub/GodloveD-lolcow-master-latest.
→˓simg
WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Singularity container built: lolcow/
Cleaning up...
@vm142-73:~$ cd lolcow/
@vm142-73:~/lolcow$ ls
bin boot dev environment etc home lib lib64 media mnt opt proc run sbin
→˓singularity srv sys tmp usr var

10.5.6 5.6 Test

Singularity can test the build of your container.

You can bypass the test by using –no-test.

10.5. 5. Running Singularity containers 69

CyVerse Documentation, Release 0.1.0

10.5.7 5.7 Bind Paths

When Singularity creates the new file system inside a container it ignores directories that are not part of the standard
kernel, e.g. /scratch, /xdisk, /global, etc. These paths can be added back into the container by binding them when the
container is run.

$ singularity shell --bind /xdisk ubuntu14.simg

The system administrator can also define what is added to a container. This is important on campus HPC systems that
often have a /scratch or /xdisk directory structure. By editing the /etc/singularity/singularity.conf a new path can be
added to the system containers.

10.5.8 5.8 Overlay

You can make changes to an immutable container which only persist for the duration of the container being run.

First, download a container.

Next, create a new image in the ext3 format.

$ singularity image.create blank_slate.simg

Now, overlay your blank image file name with the container you just downloaded.

$ sudo singularity shell --overlay blank_slate.simg ubuntu14.simg

note: using the ‘sudo‘ command to make the container writable

10.6 6. Singularity-Hub

You can host containers on Singularity’s own container registry Singularity-Hub

Connect a GitHub repo to the Hub which contains a Singularity file. The image will be built automatically and
be hosted on the Hub.

You can pull your built images from the shub:// followed by your Github user identity and repo name.

70 Chapter 10. Introduction to Singularity

https://singularity-hub.org

CHAPTER 11

Advanced Singularity

|singularity|

11.1 1. Using HPC Environments

Conducting analyses on high performance computing clusters happens through very different patterns of interaction
than running analyses on a VM. When you login, you are on a node that is shared with lots of people. Trying to run
jobs on that node is not “high performance” at all. Those login nodes are just intended to be used for moving files,
editing files, and launching jobs.

Most jobs on an HPC cluster are neither interactive, nor realtime. When you submit a job to the scheduler, you must
tell it what resources you need (e.g. how many nodes, what type of nodes) and what you want to run. Then the
scheduler finds resources matching your requirements, and runs the job for you when it can.

You can run a simple command on the login node as opposed to a large job:

module load singularity
singularity exec docker://python:latest python --version

The “User’s Guide” for Ocelote can be found at: https://docs.hpc.arizona.edu

11.1.1 How do HPC systems fit into the development workflow?

A few things to consider when using HPC systems:

1. Using ‘sudo’ is not allowed on HPC systems, and building a Singularity container from scratch requires sudo.
That means you have to build your containers on a different development system. You can pull a docker image
on HPC systems.

2. If you need to edit text files, command line text editors don’t support using a mouse, so working efficiently has
a learning curve. There are text editors that support editing files over SSH. This lets you use a local text editor
and just save the changes to the HPC system.

71

https://docs.hpc.arizona.edu

CyVerse Documentation, Release 0.1.0

3. Singularity has changed image formats. Depending on the version of Singularity running on the HPC system,
new squashFS or .simg formats may not work. The images take a lot less space

4. You can’t run Docker containers - security stuff!

11.1.2 Tutorial #1

This is a review of knowledge already covered in this workshop. This is optional. If you create this container, it will
have to be where you have root authority. Or, at the point where this container is transferred to HPC, you can use one
you have created previously.

1. Build this where you have root authority

2. Some packages are more complex than “pip install numpy”

3. Include your bind points

BootStrap: yum
OSVersion: 7
MirrorURL: http://mirror.centos.org/centos-%{OSVERSION}/%{OSVERSION}/os/$basearch/
Include: yum wget
best to build up container using kickstart mentality.
ie, to add more packages to image,
re-run bootstrap command again.
bootstrap on existing image will build on top of it, not overwriting it/restarting
→˓from scratch
singularity .def file is like kickstart file
unix commands can be run, but if there is any error, the bootstrap process ends
%setup
commands to be executed on host outside container during bootstrap

%post
commands to be executed inside container during bootstrap
add python and install some packages
yum -y install vim wget python epel-release
yum -y install python-pip
install tensorflow
pip install --upgrade pip
pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/

→˓tensorflow-0.9.0-cp27-none-linux_x86_64.whl
pip install --upgrade numpy scipy astropy
create bind points for storage.
mkdir /extra
mkdir /xdisk
exit 0

%runscript
commands to be executed when the container runs
echo "Arguments received: $*"
exec /usr/bin/python "$@"

%test
commands to be executed within container at close of bootstrap process

Create container

singularity build astropy.img astropy.recipe

The next step is to copy this singularity to one of your directories on Ocelote. For example:

72 Chapter 11. Advanced Singularity

CyVerse Documentation, Release 0.1.0

scp astropy.img chrisreidy@filexfer.hpc.arizona.edu:

Log into home directory on Ocelote then “mv” file to /extra/chrisreidy/singularity Test with these commands

$ module load singularity
$ singularity exec astropy.img python --version
Python 2.7.5

On an HPC system, your job submission script would look something like:

###==
#!/bin/bash
#PBS -N singularity-job
#PBS -W group_list=GroupName
#PBS -q standard
#PBS -l select=1:ncpus=1:mem=6gb
#PBS -l walltime=01:00:00
#PBS -l cput=12:00:00
module load singularity
cd /extra/chrisreidy/singularity
date
singularity exec astropy.img python --version
date

This example uses PBS which is the schduler available on Ocelote. ElGato uses LSF which has the same functions
but different syntax. Run the job:

qsub astropy.pbs

It is usually possible to get an interactive session as well. For example:

qsub -I -N jobname -W group_list=YourGroup -q windfall -l select=1:ncpus=28:mem=168gb
→˓-l cput=1:0:0 -l walltime=1:0:0

11.2 2. Singularity and MPI

Singularity supports MPI fairly well. Since (by default) the network is the same insde and outside the container, the
communication between containers usually just works. The more complicated bit is making sure that the container has
the right set of MPI libraries. MPI is an open specification, but there are several implementations (OpenMPI, MVA-
PICH2, and Intel MPI to name three which are available on Ocelote) with some non-overlapping feature sets. If the
host and container are running different MPI implementations, or even different versions of the same implementation,
tragedy may ensue.

The general rule is that you want the version of MPI inside the container to be the same version or newer than the host.
You may be thinking that this is not good for the portability of your container, and you are right. Containerizing MPI
applications is not terribly difficult with Singularity, but it comes at the cost of additional requirements for the host
system.

Note: Many HPC Systems, like Ocelote, have highspeed, low latency networks that have special drivers. Ocelote and
ElGato use Infiniband. When running MPI jobs, if the container doesn’t have the right libraries, it won’t be able to use
those special interconnects to communicate between nodes.

11.2. 2. Singularity and MPI 73

CyVerse Documentation, Release 0.1.0

Because you may have to build your own MPI enabled Singularity images (to get the versions to match), here is a 2.3
compatible example of what it may look like:

Copyright (c) 2015-2016, Gregory M. Kurtzer. All rights reserved.
#
"Singularity" Copyright (c) 2016, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any
required approvals from the U.S. Dept. of Energy). All rights reserved.

BootStrap: debootstrap
OSVersion: xenial
MirrorURL: http://us.archive.ubuntu.com/ubuntu/

%runscript
echo "This is what happens when you run the container..."

%post
echo "Hello from inside the container"
sed -i 's/$/ universe/' /etc/apt/sources.list
apt update
apt -y --allow-unauthenticated install vim build-essential wget gfortran

→˓bison libibverbs-dev libibmad-dev libibumad-dev librdmacm-dev libmlx5-dev
→˓libmlx4-dev

wget http://mvapich.cse.ohio-state.edu/download/mvapich/mv2/ mvapich2-2.1.tar.
→˓gz

tar xvf mvapich2-2.1.tar.gz
cd mvapich2-2.1
./configure --prefix=/usr/local
make -j4
make install
/usr/local/bin/mpicc examples/hellow.c -o /usr/bin/hellow

You could also build in everything in a Dockerfile and convert the image to Singularity at the end.

Once you have a working MPI container, invoking it would look something like:

module load mvapich2
mpirun -np 4 singularity exec ./mycontainer.img /app.py arg1 arg2

This will use the host MPI libraries to run in parallel, and assuming the image has what it needs, can work across
many nodes.

For a single node, you can also use the container MPI to run in parallel (usually you don’t want this)

module load mvapich2
singularity exec ./mycontainer.img mpirun -np 4 /app.py arg1 arg2

11.3 3. Singularity and GPU Computing

GPU support in Singularity is fantastic

Since Singularity supported docker containers, it has been fairly simple to utilize GPUs for machine learning code like
TensorFlow. On Ocelote we have downloaded Docker images from Nvidia for most ML workflows, and converted
them to Singularity. They are kept in /unsupported/singularity/nvidia, and can be copied to your own directories.

74 Chapter 11. Advanced Singularity

CyVerse Documentation, Release 0.1.0

11.3.1 Tutorial #2

This example is a case of running a simple container using an interactive session. You don’t need to know anything
about machine learning. From Ocelote:

cd /extra/netid
mkdir astro
cd astro
cp /unsupported/singularity/nvidia/nvidia-tensorflow.18.03-py3.simg .
cp /unsupported/singularity/nvidia/tensorflow_example.py .
Work from a compute node. This step is likely to take more than a minute depending
→˓on how busy the scheduler is.
qsub -I -N jobname -m bea -W group_list=YourGroup -q standard -l
→˓select=1:ncpus=28:mem=168gb:ngpus=1 -l cput=1:0:0 -l walltime=1:0:0
Load the singularity module
module load singularity
cd /extra/netid/astro
singularity exec --nv nvidia-tensorflow.18.03-py3.simg python tensorflow_example.py

Please note that the –nv flag specifically passes the GPU drivers into the container. If you leave it out, the GPU will
not be detected.

11.3.2 Tutorial #3

This example is a little different. It demonstrates the ability to pull a Docker image, embed it in Singularity and run it
on a GPU node. For TensorFlow, you can directly pull their latest GPU image and utilize it as follows.

Start an interactive session after you are on the login node. Edit as needed:
qsub -I -N jobname -W group_list=YourGroup -q standard -l
→˓select=1:ncpus=28:mem=168gb:ngpus=1 -l cput=1:0:0 -l walltime=1:0:0
cd /extra/netid/astro
Get the software
git clone https://github.com/tensorflow/models.git ~/models
Pull the image
singularity pull docker://tensorflow/tensorflow:latest-gpu
Run the code
singularity exec --nv tensorflow-latest-gpu.simg python $HOME/models/tutorials/image/
→˓mnist/convolutional.py

Note: You probably noticed that we check out the models repository into your $HOME directory. This is because
your $HOME and $WORK directories are only available inside the container if the root folders /home and /work exist
inside the container. In the case of tensorflow-latest-gpu.img, the /work directory does not exist, so any files there are
inaccessible to the container.

11.3. 3. Singularity and GPU Computing 75

CyVerse Documentation, Release 0.1.0

76 Chapter 11. Advanced Singularity

CHAPTER 12

Booting an Atmosphere computer instance for your use!

What we’re going to walk through how to start up a running computer (an “instance”) on the CyVerse Atmosphere
Cloud service.

Below, we’ve provided screenshots of the whole process. You can click on them to zoom in. The important areas to
fill in are highlighted.

First, go to the Atmosphere application and then click login

Important: As descrbied in the pre-workshop setup, you need to have access to the CyVerse Atmosphere Cloud. If
you are not able to log-in for some reason, please let us know and we will fix it immediately.

1. Fill in the username and password and click “LOGIN”

• Fill in the username, which is your CyVerse username, and then enter the password (which is your CyVerse
password).

77

https://atmo.cyverse.org/application/images
../getting_started/installation.html

CyVerse Documentation, Release 0.1.0

2. Select the “Projects” tab and then click the “CREATE NEW PROJECT” button

• This is something you only need to do once.

• A project is a workspace that lets you keep things together.

• Click on the “Projects” tab on the top and then click the “CREATE NEW PROJECT” button

78 Chapter 12. Booting an Atmosphere computer instance for your use!

CyVerse Documentation, Release 0.1.0

• Enter the name “Astrocontainers” into the Project Name and put something simple like “CyVerse AstroContain-
ers Workshop, May 2018” into the description. Then click “CREATE”.

79

CyVerse Documentation, Release 0.1.0

3. Select the newly created project

• Click on your newly created project.

• Click “NEW” and then “Instance” from the dropdown menu to start up a new virtual machine.

80 Chapter 12. Booting an Atmosphere computer instance for your use!

CyVerse Documentation, Release 0.1.0

• Search for “docker” in the “Show All” tab; click the “Ubuntu 14_04 w Docker CE” image.

81

CyVerse Documentation, Release 0.1.0

• Name your virtual machine something simple such as “tutorial” and select an appropriate instance size, such as
“medium3 (CPU: 4, Mem: 32GB, Disk: 240GB)”.

• Leave rest of the fields as default.

82 Chapter 12. Booting an Atmosphere computer instance for your use!

CyVerse Documentation, Release 0.1.0

• Wait for it to become active

• It will now be booting up! This will take 2-10 minutes. Just wait! Don’t reload or do anything.

83

CyVerse Documentation, Release 0.1.0

• One the virtual machine is ready, the “Status” column will turn green and described as “Active”.

• Click on your new instance’s name to get more information!

• Now, you can either click “Open Web Shell”, or, if you know how to use ssh, you can ssh in with your CyVerse
username on the IP address of the machine

84 Chapter 12. Booting an Atmosphere computer instance for your use!

CyVerse Documentation, Release 0.1.0

4. Deleting your instance

• To completely remove your instance, you can select the “Delete” button from the instance details page.

• This will open up a dialogue window. Select the “Yes, delete this instance” button.

85

CyVerse Documentation, Release 0.1.0

• It may take Atmosphere a few minutes to process your request. The instance should disappear from the project
when it has been successfully deleted.

86 Chapter 12. Booting an Atmosphere computer instance for your use!

CyVerse Documentation, Release 0.1.0

Note: It is advisable to delete the machine if you are not planning to use it in future to save valuable resources.
However if you want to use it in future, you can suspend it.

87

CyVerse Documentation, Release 0.1.0

88 Chapter 12. Booting an Atmosphere computer instance for your use!

CHAPTER 13

Docker related resources

Awesome Docker

Docker labs

Docker Community Slack

Docker Community Forums

Docker hub

Docker documentation

Docker on StackOverflow

Docker on Twitter

Play With Docker Hands-On Labs

Docker tips

Docker cloud

Docker store

Interesting tutorials and blog posts:

1. Docker Blog

2. A beginner friendly intro to VMs and Docker

3. Intro to Docker from Neurohackweek

4. Understanding Images

89

https://veggiemonk.github.io/awesome-docker/
https://github.com/docker/labs
https://community.docker.com/registrations/groups/4316
https://forums.docker.com/
https://hub.docker.com/
http://docs.docker.com/
https://stackoverflow.com/questions/tagged/docker
http://twitter.com/docker
http://training.play-with-docker.com/
https://blog.docker.com/2018/01/5-tips-learn-docker-2018/
https://cloud.docker.com
https://store.doc
http://blog.docker.com/
https://medium.freecodecamp.com/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b#.3giab6wvo
https://neurohackweek.github.io/docker-for-scientists/
https://code.tutsplus.com/tutorials/docker-from-the-ground-up-understanding-images--cms-28165

CyVerse Documentation, Release 0.1.0

90 Chapter 13. Docker related resources

CHAPTER 14

Singularity related resources

Singularity Homepage

Singularity Hub

University of Arizona Singularity Tutorials

NIH HPC

Dolmades - Windows Apps in Linux Docker-Singularity Containers Warning not tested

14.1 Singularity Talks

Gregory Kurtzer, creator of Singularity has provided two good talks online: Introduction to Singularity, and Advanced
Singularity.

Vanessa Sochat, lead developer of Singularity Hub, also has given a great talk on Singularity which you can see online.

91

http://singularity.lbl.gov/
https://www.singularity-hub.org/
https://docs.hpc.arizona.edu/display/UAHPC/Singularity+Tutorials
https://hpc.nih.gov/apps/singularity.html
http://dolmades.org
https://wilsonweb.fnal.gov/slides/hpc-containers-singularity-introductory.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-containers-singularity-advanced.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-containers-singularity-advanced.pdf
https://docs.google.com/presentation/d/14-iKKUpGJC_1qpVFVUyUaitc8xFSw9Rp3v_UE9IGgjM/pub?start=false&loop=false&delayms=3000&slide=id.g1c1cec989b_0_154

CyVerse Documentation, Release 0.1.0

92 Chapter 14. Singularity related resources

CHAPTER 15

Other resources

University of Arizona Campus Resources

• UA Campus Accessibility

• UA Campus Transportation

• Family Spaces and Lactation Support

• BIO5 Institute

• Transportation beyond BIO5 and UA campus

93

http://www.arizona.edu/campus-accessibility
https://parking.arizona.edu/campus-services/cattran/
https://lifework.arizona.edu/cc/lactation_information
http://www.bio5.org/
http://www.sunlinkstreetcar.com/

CyVerse Documentation, Release 0.1.0

94 Chapter 15. Other resources

CHAPTER 16

For instructors!

Coordinating Web site work

Please create a pull request as soon as you start editing something, rather than waiting! That way you can tell others
what you’re working on.

You could/should also mention it on Slack in the “cc-leads” channel.

Technical info re adding content to the Web site

All the AstroContainers Workshop tutorials are stored on GitHub.

We will use GitHub Flow for updates: from the command line,

• fork astrocontainers repository;

• edit, change, add, etc;

• submit a PR;

• when ready to review & merge say ‘ready for review & merge @ac2018’.

It’s important that all updates go through code review by someone. Anyone with push access to the repo can review
and merge!

From the Web site, you should be able to edit the files and then set up a PR directly. You can also fork the repo,
perform multiple edits and submit a PR through the web interface.

Updating the “official” Web site.

The Web site, will update automatically from GitHub. However, it may take 5-15 minutes to do so.

Building a local copy of the Web site.

Briefly,

• clone the repo:

git clone https://github.com/CyVerse-learning-materials/
astrocontainers_workshop_2018.git

95

https://github.com/CyVerse-learning-materials/astrocontainers_workshop_2018
https://guides.github.com/introduction/flow/
https://cyverse-container-camp-workshop-2018.readthedocs-hosted.com/

CyVerse Documentation, Release 0.1.0

• set up a virtualenv with python2 or python3:

python -m virtualenv buildenv -p python3.5; . ~/buildenv/bin/activate

• install the prerequisites:

pip install -r requirements.txt

• build site:

make html

• open / click on

_build/html/index.html

Formatting, guidelines, etc.

Everything can/should be in Restructured text If you’re not super familiar with Restructured text, you can use online
restructured text editor to write your tutorials.

(Note that you can go visit the github repo and it will helpfully render .rst files for you if you click on them! They just
won’t have the full site template.)

Files and images that don’t need to be “compiled” and should just be served up through the web site can be put in the
_static directory; their URL will then be

https://cyverse-container-camp-workshop-2018.readthedocs-hosted.com/_static/filename

Images

Image formatting in Restructured text is pretty straightforward. Here is an example

96 Chapter 16. For instructors!

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet!
/http://rst.ninjs.org/
/http://rst.ninjs.org/
https://cyverse-container-camp-workshop-2018.readthedocs-hosted.com/_static/filename

CyVerse Documentation, Release 0.1.0

.. |static_site_docker| image:: ../img/static_site_docker.png

:width: 750

:height: 700

97

CyVerse Documentation, Release 0.1.0

98 Chapter 16. For instructors!

CHAPTER 17

Problems? Bugs? Questions?

• If there is a bug and you can fix it: submit a PR. Make sure that I know who you are so that I can thank you.

• If there is a bug and you can’t fix it, but you can reproduce it: submit an issue explaining how to reproduce.

• If there is a bug and you can’t even reproduce it: sorry. It is probably an Heisenbug. We can’t act on it until it’s
reproducible, alas.

• If you have attended this workshop and have feedback, or if you want somebody to deliver that workshop at
your conference or for your company: you can contact one of us!

upendra at cyverse dot org

Thank you!

99

	Workshop Code of Conduct
	Pre-Workshop Setup
	Agenda
	About CyVerse
	Training session in Docker
	Training session in Singularity
	Introduction to Docker
	Advanced Docker
	Additional Docker Demo’s
	Introduction to Singularity
	Advanced Singularity
	Booting an Atmosphere computer instance for your use!
	Docker related resources
	Singularity related resources
	Other resources
	For instructors!
	Problems? Bugs? Questions?

